scispace - formally typeset
Search or ask a question
Institution

University of Cologne

EducationCologne, Germany
About: University of Cologne is a education organization based out in Cologne, Germany. It is known for research contribution in the topics: Population & Gene. The organization has 32050 authors who have published 66350 publications receiving 2210092 citations. The organization is also known as: Universität zu Köln & Universitatis Coloniensis.
Topics: Population, Gene, Transplantation, Medicine, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: This study provides the first direct evidence that increased Fto expression causes obesity in mice and shows here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet.
Abstract: Genome-wide association studies have identified SNPs within the human FTO gene that display a strong association with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh ~3kg more. Loss of function and/or expression of FTO in mice leads to increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or high fat diet. The increased body mass results primarily from increased food intake. Glucose intolerance develops with increased Fto expression on a high fat diet. This study provides the first direct evidence that increased Fto expression causes obesity in mice.

631 citations

Journal ArticleDOI
10 Sep 2001-Oncogene
TL;DR: The origin of a large number of B cell lymphomas from GC B cells is likely closely related to aberrant hypermutation and isotype switching activity in these B cells, and the common denominator of these three processes in the formation of Ig-associated translocations is probably represented by the fact that each of these processes intrinsically generates double-strand DNA breaks.
Abstract: Reciprocal chromosomal translocations involving the immunoglobulin (Ig) loci are a hallmark of most mature B cell lymphomas and usually result in dysregulated expression of oncogenes brought under the control of the Ig enhancers. Although the precise mechanisms involved in the development of these translocations remains essentially unknown, a clear relationship has been established with the mechanisms that lead to Ig gene remodeling, including V(D)J recombination, isotype switching and somatic hypermutation. The common denominator of these three processes in the formation of Ig-associated translocations is probably represented by the fact that each of these processes intrinsically generates double-strand DNA breaks. Since isotype switching and somatic hypermutation occur in germinal center (GC) B cells, the origin of a large number of B cell lymphomas from GC B cells is likely closely related to aberrant hypermutation and isotype switching activity in these B cells.

630 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate how relevant recalcitrance is for the long-term stabilization of soil organic matter (SOM) or its fractions, based on a critical overview of available methods and on results from a cooperative research program.
Abstract: Traditionally, the selective preservation of certain recalcitrant organic compounds and the formation of recalcitrant humic substances have been regarded as an important mechanism for soil organic matter (SOM) stabilization. Based on a critical overview of available methods and on results from a cooperative research program, this paper evaluates how relevant recalcitrance is for the long-term stabilization of SOM or its fractions. Methodologically, recalcitrance is difficult to assess, since the persistence of certain SOM fractions or specific compounds may also be caused by other stabilization mechanisms, such as physical protection or chemical interactions with mineral surfaces. If only free particulate SOM obtained from density fractionation is considered, it rarely reaches ages exceeding 50 y. Older light particles have often been identified as charred plant residues or as fossil C. The degradability of the readily bioavailable dissolved or water-extractable OM fraction is often negatively correlated with its content in aromatic compounds, which therefore has been associated with recalcitrance. But in subsoils, dissolved organic matter aromaticity and biodegradability both are very low, indicating that other factors or compounds limit its degradation. Among the investigated specific compounds, lignin, lipids, and their derivatives have mean turnover times faster or similar as that of bulk SOM. Only a small fraction of the lignin inputs seems to persist in soils and is mainly found in the fine textural size fraction ( 40–50 y, unless fossil C was present in substantial amounts, as at a site exposed to lignite inputs in the past. Here, turnover of pyrolysis products seemed to be much longer, even for those attributed to carbohydrates or proteins. Apparently, fossil C from lignite coal is also utilized by soil organisms, which is further evidenced by low 14C concentrations in microbial phospholipid fatty acids from this site. Also, black C from charred plant materials was susceptible to microbial degradation in a short-term (60 d) and a long-term (2 y) incubation experiment. This degradation was enhanced, when glucose was supplied as an easily available microbial substrate. Similarly, SOM mineralization in many soils generally increased after addition of carbohydrates, amino acids, or simple organic acids, thus indicating that stability may also be caused by substrate limitations. It is concluded that the presented results do not provide much evidence that the selective preservation of recalcitrant primary biogenic compounds is a major SOM-stabilization mechanism. Old SOM fractions with slow turnover rates were generally only found in association with soil minerals. The only not mineral-associated SOM components that may be persistent in soils appear to be black and fossil C.

629 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the possibilities of detecting the various subtypes of (excited) BSs: possible signals include gravitational redshift and (micro-)lensing, emission of gravitational waves, or, in the case of a giant BS, its dark matter contribution to the rotation curves of galactic halos.
Abstract: There is accumulating evidence that (fundamental) scalar fields may exist in nature. The gravitational collapse of such a boson cloud would lead to a boson star (BS) as a new type of a compact object. As with white dwarfs and neutron stars, a limiting mass exists similarly, below which a BS is stable against complete gravitational collapse to a black hole. According to the form of the self-interaction of the basic constituents and spacetime symmetry, we can distinguish mini-, axidilaton, soliton, charged, oscillating and rotating BSs. Their compactness prevents a Newtonian approximation; however, modifications of general relativity, as in the case of Jordan?Brans?Dicke theory as a low-energy limit of strings, would provide them with gravitational memory. In general, a BS is a compact, completely regular configuration with structured layers due to the anisotropy of scalar matter, an exponentially decreasing 'halo', a critical mass inversely proportional to the constituent mass, an effective radius and a large particle number. Due to the Heisenberg principle, a completely stable branch exists, and as a coherent state, it allows for rotating solutions with quantized angular momentum. In this review, we concentrate on the fascinating possibilities of detecting the various subtypes of (excited) BSs: possible signals include gravitational redshift and (micro-)lensing, emission of gravitational waves, or, in the case of a giant BS, its dark matter contribution to the rotation curves of galactic halos.

628 citations

Journal ArticleDOI
TL;DR: It is demonstrated that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight, but insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.

628 citations


Authors

Showing all 32558 results

NameH-indexPapersCitations
Julie E. Buring186950132967
Stuart H. Orkin186715112182
Cornelia M. van Duijn1831030146009
Dorret I. Boomsma1761507136353
Frederick W. Alt17157795573
Donald E. Ingber164610100682
Klaus Müllen1642125140748
Klaus Rajewsky15450488793
Frederik Barkhof1541449104982
Stefanie Dimmeler14757481658
Detlef Weigel14251684670
Hidde L. Ploegh13567467437
Luca Valenziano13043794728
Peter Walter12684171580
Peter G. Martin12555397257
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

97% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

University of Zurich
124K papers, 5.3M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023324
2022634
20214,225
20204,052
20193,526
20183,078