scispace - formally typeset
Search or ask a question
Institution

University of Cologne

EducationCologne, Germany
About: University of Cologne is a education organization based out in Cologne, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 32050 authors who have published 66350 publications receiving 2210092 citations. The organization is also known as: Universität zu Köln & Universitatis Coloniensis.


Papers
More filters
Journal ArticleDOI
TL;DR: Episodic antiretroviral therapy guided by the CD4+ count significantly increased the risk of opportunistic disease or death from any cause, as compared with continuous antireteviral therapy, largely as a consequence of lowering theCD4+ cell count and increasing the viral load.
Abstract: Methods We randomly assigned persons infected with HIV who had a CD4+ cell count of more than 350 per cubic millimeter to the continuous use of antiretroviral therapy (the viral suppression group) or the episodic use of antiretroviral therapy (the drug conservation group). Episodic use involved the deferral of therapy until the CD4+ count decreased to less than 250 per cubic millimeter and then the use of therapy until the CD4+ count increased to more than 350 per cubic millimeter. The primary end point was the development of an opportunistic disease or death from any cause. An important secondary end point was major cardiovascular, renal, or hepatic disease. Results A total of 5472 participants (2720 assigned to drug conservation and 2752 to viral suppression) were followed for an average of 16 months before the protocol was modified for the drug conservation group. At baseline, the median and nadir CD4+ counts were 597 per cubic millimeter and 250 per cubic millimeter, respectively, and 71.7% of participants had plasma HIV RNA levels of 400 copies or less per milliliter. Opportunistic disease or death from any cause occurred in 120 participants (3.3 events per 100 person-years) in the drug conservation group and 47 participants (1.3 per 100 person-years) in the viral suppression group (hazard ratio for the drug conservation group vs. the viral suppression group, 2.6; 95% confidence interval [CI], 1.9 to 3.7; P<0.001). Hazard ratios for death from any cause and for major cardiovascular, renal, and hepatic disease were 1.8 (95% CI, 1.2 to 2.9; P = 0.007) and 1.7 (95% CI, 1.1 to 2.5; P = 0.009), respectively. Adjustment for the latest CD4+ count and HIV RNA level (as time-updated covariates) reduced the hazard ratio for the primary end point from 2.6 to 1.5 (95% CI, 1.0 to 2.1). Conclusions Episodic antiretroviral therapy guided by the CD4+ count, as used in our study, significantly increased the risk of opportunistic disease or death from any cause, as compared with continuous antiretroviral therapy, largely as a consequence of lowering the CD4+ cell count and increasing the viral load. Episodic antiretroviral therapy does not reduce the risk of adverse events that have been associated with antiretroviral therapy. (ClinicalTrials.gov number, NCT00027352.)

1,999 citations

Journal ArticleDOI
21 Apr 2016-Cell
TL;DR: It is concluded that transcript levels by themselves are not sufficient to predict protein levels in many scenarios and to thus explain genotype-phenotype relationships and that high-quality data quantifying different levels of gene expression are indispensable for the complete understanding of biological processes.

1,996 citations

Journal ArticleDOI
11 Sep 2003-Oncogene
TL;DR: The identification of MALAT-1 emphasizes the potential role of noncoding RNAs in human cancer and contributes to the identification of early-stage NSCLC patients that are at high risk to develop metastasis.
Abstract: Early-stage non-small cell lung cancer (NSCLC) can be cured by surgical resection, but a substantial fraction of patients ultimately dies due to distant metastasis. In this study, we used subtractive hybridization to identify gene expression differences in stage I NSCLC tumors that either did or did not metastasize in the course of disease. Individual clones (n=225) were sequenced and quantitative RT-PCR verified overexpression in metastasizing samples. Several of the identified genes (eIF4A1, thymosin beta4 and a novel transcript named MALAT-1) were demonstrated to be significantly associated with metastasis in NSCLC patients (n=70). The genes' association with metastasis was stage- and histology specific. The Kaplan-Meier analyses identified MALAT-1 and thymosin beta4 as prognostic parameters for patient survival in stage I NSCLC. The novel MALAT-1 transcript is a noncoding RNA of more than 8000 nt expressed from chromosome 11q13. It is highly expressed in lung, pancreas and other healthy organs as well as in NSCLC. MALAT-1 expressed sequences are conserved across several species indicating its potentially important function. Taken together, these data contribute to the identification of early-stage NSCLC patients that are at high risk to develop metastasis. The identification of MALAT-1 emphasizes the potential role of noncoding RNAs in human cancer.

1,955 citations

Journal ArticleDOI
TL;DR: In this review, emerging concepts in tissue regeneration and repair are highlighted, and some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies are provided.
Abstract: The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body’s natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies.

1,947 citations

Journal ArticleDOI
TL;DR: The generation of mice that express Cre in myeloid cells due to targeted insertion of the cre cDNA into their endogenous M lysozyme locus is reported, allowing for both specific and highly efficient Cre–mediated deletion of loxP–flanked target genes in myELoid cells.
Abstract: Conditional mutagenesis in mice has recently been made possible through the combination of gene targeting techniques and site-directed mutagenesis, using the bacteriophage P1-derived Cre/loxP recombination system. The versatility of this approach depends on the availability of mouse mutants in which the recombinase Cre is expressed in the appropriate cell lineages or tissues. Here we report the generation of mice that express Cre in myeloid cells due to targeted insertion of the cre cDNA into their endogenous M lysozyme locus. In double mutant mice harboring both the LysMcre allele and one of two different loxP-flanked target genes tested, a deletion efficiency of 83-98% was determined in mature macrophages and near 100% in granulocytes. Partial deletion (16%) could be detected in CD11c+ splenic dendritic cells which are closely related to the monocyte/macrophage lineage. In contrast, no significant deletion was observed in tail DNA or purified T and B cells. Taken together, LysMcre mice allow for both specific and highly efficient Cre-mediated deletion of loxP-flanked target genes in myeloid cells.

1,943 citations


Authors

Showing all 32558 results

NameH-indexPapersCitations
Julie E. Buring186950132967
Stuart H. Orkin186715112182
Cornelia M. van Duijn1831030146009
Dorret I. Boomsma1761507136353
Frederick W. Alt17157795573
Donald E. Ingber164610100682
Klaus Müllen1642125140748
Klaus Rajewsky15450488793
Frederik Barkhof1541449104982
Stefanie Dimmeler14757481658
Detlef Weigel14251684670
Hidde L. Ploegh13567467437
Luca Valenziano13043794728
Peter Walter12684171580
Peter G. Martin12555397257
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

97% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

University of Zurich
124K papers, 5.3M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023324
2022634
20214,225
20204,051
20193,526
20183,078