scispace - formally typeset
Search or ask a question
Institution

University of Colorado Boulder

EducationBoulder, Colorado, United States
About: University of Colorado Boulder is a education organization based out in Boulder, Colorado, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 48794 authors who have published 115151 publications receiving 5387328 citations. The organization is also known as: CU Boulder & UCB.
Topics: Population, Galaxy, Poison control, Solar wind, Stars


Papers
More filters
Journal ArticleDOI
16 Sep 2010-Nature
TL;DR: An integrative strategy is used to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics, and finds MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake.
Abstract: Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.

780 citations

Journal ArticleDOI
26 Sep 2013-Nature
TL;DR: This work constitutes an initial exploration of the behaviour of many-body spin models with direct, long-range spin interactions and lays the groundwork for future studies of many -body dynamics in spin lattices.
Abstract: In a step towards developing a system in which to study quantum magnetism, the long-range dipolar interactions of polar molecules pinned in a three-dimensional optical lattice are used to realize a lattice spin model. The long-range dipolar interactions between polar molecules in ultracold molecular gases allow the spin dynamics to be fully decoupled from motion of the molecules — an attractive feature for the realization of lattice spin models for exploring quantum magnetism. Measured effects of such dipolar interactions have so far been limited to the modification of inelastic collisions and chemical reactions. Here the authors use dipolar interactions of polar molecules pinned in a three-dimensional optical lattice to realize a lattice spin model. The results open the possibility of realizing a wide range of spin models with long-range interaction, and lay the groundwork for future studies of many-body dynamics in spin lattices. With the production of polar molecules in the quantum regime1,2, long-range dipolar interactions are expected to facilitate understanding of strongly interacting many-body quantum systems and to realize lattice spin models3 for exploring quantum magnetism. In ordinary atomic systems, where contact interactions require wavefunction overlap, effective spin interactions on a lattice can be mediated by tunnelling, through a process referred to as superexchange; however, the coupling is relatively weak and is limited to nearest-neighbour interactions4,5. In contrast, dipolar interactions exist even in the absence of tunnelling and extend beyond nearest neighbours. This allows coherent spin dynamics to persist even for gases with relatively high entropy and low lattice filling. Measured effects of dipolar interactions in ultracold molecular gases have been limited to the modification of inelastic collisions and chemical reactions6,7. Here we use dipolar interactions of polar molecules pinned in a three-dimensional optical lattice to realize a lattice spin model. Spin is encoded in rotational states of molecules that are prepared and probed by microwaves. Resonant exchange of rotational angular momentum between two molecules realizes a spin-exchange interaction. The dipolar interactions are apparent in the evolution of the spin coherence, which shows oscillations in addition to an overall decay of the coherence. The frequency of these oscillations, the strong dependence of the spin coherence time on the lattice filling factor and the effect of a multipulse sequence designed to reverse dynamics due to two-body exchange interactions all provide evidence of dipolar interactions. Furthermore, we demonstrate the suppression of loss in weak lattices due to a continuous quantum Zeno mechanism8. Measurements of these tunnelling-induced losses allow us to determine the lattice filling factor independently. Our work constitutes an initial exploration of the behaviour of many-body spin models with direct, long-range spin interactions and lays the groundwork for future studies of many-body dynamics in spin lattices.

779 citations

Journal ArticleDOI
TL;DR: The cognitive walkthrough methodology, described in detail, is an adaptation of the design walkthrough techniques that have been used for many years in the software engineering community and is based on a theory of learning by exploration presented.
Abstract: This paper presents a new methodology for performing theory-based evaluations of user interface designs early in the design cycle. The methodology is an adaptation of the design walkthrough techniques that have been used for many years in the software engineering community. Traditional walkthroughs involve hand simulation of sections of code to ensure that they implement specified functionality. The method we present involves hand simulation of the cognitive activities of a user, to ensure that the user can easily learn to perform tasks that the system is intended to support. The cognitive walkthrough methodology, described in detail, is based on a theory of learning by exploration presented in this paper. There is a summary of preliminary results of effectiveness and comparisons with other design methods.

778 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the kinetic problem of intergranular fracture at elevated temperatures by the nucleation and growth of voids in the grain boundary and calculated the time-to-fracture.

777 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived from five Landsat 7 images acquired between January 2000 and February 2003 show a two-to-sixfold increase in centerline speed of four glaciers flowing into the now-collapsed section of the Larsen B Ice Shelf.
Abstract: Ice velocities derived from five Landsat 7 images acquired between January 2000 and February 2003 show a two- to six-fold increase in centerline speed of four glaciers flowing into the now-collapsed section of the Larsen B Ice Shelf. Satellite laser altimetry from ICEsat indicates the surface of Hektoria Glacier lowered by up to 38 +/- 6 m a six-month period beginning one year after the break-up in March 2002. Smaller elevation losses are observed for Crane and Jorum glaciers over a later 5-month period. Two glaciers south of the collapse area, Flask and Leppard, show little change in speed or elevation. Seasonal variations in speed preceding the large post-collapse velocity increases suggest that both summer melt percolation and changes in the stress field due to shelf removal play a major role in glacier dynamics.

776 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Charles A. Dinarello1901058139668
Jie Zhang1784857221720
David Haussler172488224960
Bradley Cox1692150156200
Gang Chen1673372149819
Rodney S. Ruoff164666194902
Menachem Elimelech15754795285
Jay Hauser1552145132683
Robert E. W. Hancock15277588481
Robert Plomin151110488588
Thomas E. Starzl150162591704
Rajesh Kumar1494439140830
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023164
2022779
20216,286
20206,493
20196,063
20185,522