scispace - formally typeset
Search or ask a question
Institution

University of Colorado Boulder

EducationBoulder, Colorado, United States
About: University of Colorado Boulder is a education organization based out in Boulder, Colorado, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 48794 authors who have published 115151 publications receiving 5387328 citations. The organization is also known as: CU Boulder & UCB.
Topics: Population, Galaxy, Poison control, Solar wind, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: The structures of the pectic polymers (the neutral arabinan, the neutral galactan, and the acidic rhamnogalacturonan) were obtained by methylation analysis of fragments of these polymers which were released from the sycamore walls by the action of a highly purified endopolygalacturonase.
Abstract: Cell wall strength is decreased by both auxin treatment and low pH. In a recently proposed model of the plant cell wall, xyloglucan polymers are hydrogen-bonded to cellulose fibrils, forming the only noncovalent link in the network of polymers which cross-link the cellulose fibers. The decreased strength of the cell wall seen upon lowering the pH might be due to an effect of hydrogen ions on the rate of xyloglucan creep along cellulose fibers. This paper investigates binding of xyloglucan fragments to cellulose. At equilibrium, the per cent of nine- and seven-sugar xyloglucan fragments which are bound to cellulose is sensitive to both temperature and the concentration of nonaqueous solvents. However, neither the per cent of xyloglucan fragments bound to cellulose at equilibrium, nor the rate at which the xyloglucan fragments bind to cellulose, is sensitive to changes in hydrogen ion concentration. These results support the hypothesis that, within the cell wall, xyloglucan chains are connected to cellulose fibers by hydrogen bonds, but these results suggest that this interconnection between xyloglucan and cellulose is unlikely to be the point within the wall which regulates the rate of cell elongation.

632 citations

Journal ArticleDOI
TL;DR: A simple point-of-care test that is inexpensive enough to use frequently, even if it lacks sensitivity, is proposed for Covid-19 cases.
Abstract: Rethinking Covid-19 Test Sensitivity As Covid-19 cases accelerate or plateau around the world, we urgently need a point-of-care test that is inexpensive enough to use frequently, even if it lacks h...

632 citations

Journal ArticleDOI
TL;DR: The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables.
Abstract: The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, Inc., to provide starting points for any gradient-based local solver for nonlinear programming (NLP) problems. This solver seeks a local solution from a subset of these points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of gradient-based local NLP solvers with the global optimization abilities of OptQuest. Computational results include 155 smooth NLP and mixed integer nonlinear program (MINLP) problems due to Floudas et al. (1999), most with both linear and nonlinear constraints, coded in the GAMS modeling language. Some are quite large for global optimization, with over 100 variables and 100 constraints. Global solutions to almost all problems are found in a small number of local solver calls, often one or two.

631 citations

Journal ArticleDOI
18 Apr 2013-Nature
TL;DR: Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
Abstract: Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A `maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

631 citations

Journal ArticleDOI
Colm O'Dushlaine1, Lizzy Rossin1, Phil Lee2, Laramie E. Duncan2  +401 moreInstitutions (115)
TL;DR: It is indicated that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders.
Abstract: Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an analysis framework to rank pathways that requires only summary statistics. We combined this score across disorders to find common pathways across three adult psychiatric disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes showed the strongest association, and we also found statistically significant evidence for associations with multiple immune and neuronal signaling pathways and with the postsynaptic density. Our study indicates that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders. Our results confirm known mechanisms and suggest several novel insights into the etiology of psychiatric disorders.

630 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Charles A. Dinarello1901058139668
Jie Zhang1784857221720
David Haussler172488224960
Bradley Cox1692150156200
Gang Chen1673372149819
Rodney S. Ruoff164666194902
Menachem Elimelech15754795285
Jay Hauser1552145132683
Robert E. W. Hancock15277588481
Robert Plomin151110488588
Thomas E. Starzl150162591704
Rajesh Kumar1494439140830
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023164
2022779
20216,286
20206,493
20196,063
20185,522