scispace - formally typeset
Search or ask a question
Institution

University of Colorado Boulder

EducationBoulder, Colorado, United States
About: University of Colorado Boulder is a education organization based out in Boulder, Colorado, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 48794 authors who have published 115151 publications receiving 5387328 citations. The organization is also known as: CU Boulder & UCB.
Topics: Population, Galaxy, Poison control, Solar wind, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a dual–primal formulation of the FETI‐2 concept that eliminates the need for that second set of Lagrange multipliers, and unifies all previously developed one‐level and two‐level FETi algorithms into a single dual‐primal FetI‐DP method.
Abstract: The FETI method and its two-level extension (FETI-2) are two numerically scalable domain decomposition methods with Lagrange multipliers for the iterative solution of second-order solid mechanics and fourth-order beam, plate and shell structural problems, respectively.The FETI-2 method distinguishes itself from the basic or one-level FETI method by a second set of Lagrange multipliers that are introduced at the subdomain cross-points to enforce at each iteration the exact continuity of a subset of the displacement field at these specific locations. In this paper, we present a dual–primal formulation of the FETI-2 concept that eliminates the need for that second set of Lagrange multipliers, and unifies all previously developed one-level and two-level FETI algorithms into a single dual–primal FETI-DP method. We show that this new FETI-DP method is numerically scalable for both second-order and fourth-order problems. We also show that it is more robust and more computationally efficient than existing FETI solvers, particularly when the number of subdomains and/or processors is very large. Copyright © 2001 John Wiley & Sons, Ltd.

628 citations

Journal ArticleDOI
TL;DR: The authors examined the full range of past natural drought variability, deduced from a com- prehensive review of the paleoclimatic literature, suggests that droughts more severe than those of the 1930s and 1950s are likely to occur in the future, a likelihood that might be exacerbated by greenhouse warming in the next century.
Abstract: Droughts are one of the most devastating natural hazards faced by the United States today. Severe droughts of the twentieth century have had large impacts on economies, society, and the environment, especially in the Great Plains. However, the instrumental record of the last 100 years contains only a limited subset of drought realizations. One must turn to the paleoclimatic record to examine the full range of past drought variability, including the range of mag- nitude and duration, and thus gain the improved understanding needed for society to anticipate and plan for droughts of the future. Historical documents, tree rings, archaeological remains, lake sediment, and geomorphic data make it clear that the droughts of the twentieth century, including those of the 1930s and 1950s, were eclipsed several times by droughts earlier in the last 2000 years, and as recently as the late sixteenth century. In general, some droughts prior to 1600 appear to be characterized by longer duration (i.e., multidecadal) and greater spatial extent than those of the twentieth century. The authors' assessment of the full range of past natural drought variability, deduced from a com- prehensive review of the paleoclimatic literature, suggests that droughts more severe than those of the 1930s and 1950s are likely to occur in the future, a likelihood that might be exacerbated by greenhouse warming in the next century. Persistence conditions that lead to decadal-scale drought may be related to low-frequency variations, or base-state shifts, in both the Pacific and Atlantic Oceans, although more research is needed to understand the mechanisms of severe drought.

628 citations

Journal ArticleDOI
TL;DR: The MAVEN spacecraft has eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space as mentioned in this paper.
Abstract: The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014 The orbiter’s science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth

628 citations

Journal ArticleDOI
TL;DR: The results of this study indicate that the current MODIS GPP algorithm shows reasonable spatial patterns and temporal variability across a diverse range of biomes and climate regimes.
Abstract: The Moderate Resolution Spectroradiometer (MODIS) sensor has provided near real-time estimates of gross primary production (GPP) since March 2000. We compare four years (2000 to 2003) of satellite-based calculations of GPP with tower eddy CO2 flux-based estimates across diverse land cover types and climate regimes. We examine the potential error contributions from meteorology, leaf area index (LAI)/fPAR, and land cover. The error between annual GPP computed from NASA's Data Assimilation Office's (DAO) and tower-based meteorology is 28%, indicating that NASA's DAO global meteorology plays an important role in the accuracy of the GPP algorithm. Approximately 62% of MOD15-based estimates of LAI were within the estimates based on field optical measurements, although remaining values overestimated site values. Land cover presented the fewest errors, with most errors within the forest classes, reducing potential error. Tower-based and MODIS estimates of annual GPP compare favorably for most biomes, although MODIS GPP overestimates tower-based calculations by 20%-30%. Seasonally, summer estimates of MODIS GPP are closest to tower data, and spring estimates are the worst, most likely the result of the relatively rapid onset of leaf-out. The results of this study indicate, however, that the current MODIS GPP algorithm shows reasonable spatial patterns and temporal variability across a diverse range of biomes and climate regimes. So, while continued efforts are needed to isolate particular problems in specific biomes, we are optimistic about the general quality of these data, and continuation of the MOD17 GPP product will likely provide a key component of global terrestrial ecosystem analysis, providing continuous weekly measurements of global vegetation production

628 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Charles A. Dinarello1901058139668
Jie Zhang1784857221720
David Haussler172488224960
Bradley Cox1692150156200
Gang Chen1673372149819
Rodney S. Ruoff164666194902
Menachem Elimelech15754795285
Jay Hauser1552145132683
Robert E. W. Hancock15277588481
Robert Plomin151110488588
Thomas E. Starzl150162591704
Rajesh Kumar1494439140830
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023164
2022779
20216,286
20206,493
20196,063
20185,522