scispace - formally typeset
Search or ask a question
Institution

University of Colorado Boulder

EducationBoulder, Colorado, United States
About: University of Colorado Boulder is a education organization based out in Boulder, Colorado, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 48794 authors who have published 115151 publications receiving 5387328 citations. The organization is also known as: CU Boulder & UCB.
Topics: Population, Galaxy, Poison control, Solar wind, Stars


Papers
More filters
Journal ArticleDOI
20 May 2011-Science
TL;DR: The value of characterizing vertebrate gut microbiomes to understand host evolutionary histories at a supraorganismal level is illustrated by shotgun sequencing of microbial community DNA and targeted sequencing of bacterial 16S ribosomal RNA genes.
Abstract: Coevolution of mammals and their gut microbiota has profoundly affected their radiation into myriad habitats. We used shotgun sequencing of microbial community DNA and targeted sequencing of bacterial 16S ribosomal RNA genes to gain an understanding of how microbial communities adapt to extremes of diet. We sampled fecal DNA from 33 mammalian species and 18 humans who kept detailed diet records, and we found that the adaptation of the microbiota to diet is similar across different mammalian lineages. Functional repertoires of microbiome genes, such as those encoding carbohydrate-active enzymes and proteases, can be predicted from bacterial species assemblages. These results illustrate the value of characterizing vertebrate gut microbiomes to understand host evolutionary histories at a supraorganismal level.

1,585 citations

Journal ArticleDOI
TL;DR: The first data release of SDSS-III is described in this article, which includes five-band imaging of roughly 5200 deg2 in the southern Galactic cap, bringing the total footprint of the Sloan Digital Sky Survey imaging to 14,555 deg2, or over a third of the Celestial Sphere.
Abstract: The Sloan Digital Sky Survey (SDSS) started a new phase in 2008 August, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Lyα forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg2 in the southern Galactic cap, bringing the total footprint of the SDSS imaging to 14,555 deg2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Exploration (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameter pipeline, which has better determination of metallicity for high-metallicity stars.

1,578 citations

Journal ArticleDOI
TL;DR: In this article, a unified model of nuclear activity and a unified approach to infer the pressures, densities, and fluid velocities within jets are explained. But the model is not applicable to the case of relativistic radio sources.
Abstract: Powerful extragalactic radio sources comprise two extended regions containing magnetic field and synchrotron-emitting relativistic electrons, each linked by a jet to a central compact radio source located in the nucleus of the associated galaxy. These jets are collimated streams of plasma that emerge from the nucleus in opposite directions, along which flow mass, momentum, energy, and magnetic flux. Methods of using the observations diagnostically to infer the pressures, densities, and fluid velocities within jets are explained. The jets terminate in the extended radio components, where they interact strongly with the surrounding medium through a combination of shock waves and instabilities. Jets may expand freely, be confined by external gas pressure, or be pinched by toroidal magnetic fields. Shear flows are known to be Kelvin-Helmholtz unstable and thus may be responsible for some of the observed oscillation of jets about their mean directions and for creating the turbulence and shock waves needed to accelerate the relativistic electrons. Larger-scale bending may be caused by changes in the jet axis within the nucleus, gravitational interaction of the radio galaxy with a companion galaxy, or rapid motion of the source through dense intergalactic gas. The compact radio sources also exhibit a jet morphology and contain more direct clues as to the origins of jets; in particular, the variations sometimes observed imply bulk flows that are relativistic. It is widely believed that nuclear activity is ultimately ascribable to gas accreting onto a massive black hole. The accretion can proceed in several different fashions, depending upon whether or not the gas has angular momentum and whether or not the radiation emitted is sufficiently intense to influence the dynamics of the flow. Several distinct mechanisms for jet production in the context of black holes have been proposed. (Alternative mechanisms involving dense star clusters and massive spinning stars are also reviewed.) Supersonic jets may be collimated along the spin axis of a gas cloud surrounding the source of the lighter jet gas. Magnetic fields may be crucial in collimating jets, especially if they are wrapped around the jet by orbiting gas and can thereby collimate the outflow through the pinch effect. In fact, the spin energy of the black hole could also be extracted by magnetic torques, in which case the jet would contain electrons and positrons and carry a large electromagnetic Poynting flux. Statistical investigations of active galaxies also furnish valuable information on their nature and evolutionary behavior. The formation of particular kinds of sources appears to be correlated with environmental effects and cosmic epoch. In addition, the brightest compact radio sources on the sky, which probably involve relativistic motion, may be intrinsically faint objects beamed in our direction. There is now compelling evidence for the continuous fueling of extragalactic radio sources through jets emerging from the nucleus of the associated galaxy. The morphological classification of radio sources is interpreted in terms of the powers, speeds, and surroundings of jets. The ratio of the mass accretion rate to the mass of the hole may determine whether an active nucleus will be primarily a thermal object like an optical quasar or a nonthermal object like a radio galaxy. The authors outline a unified model of nuclear activity and assess what future progress may stem from observational developments (especially the proposed very long baseline array), experimental approaches (such as wind tunnel simulations), and theoretical studies (in particular, large-scale numerical hydrodynamical computing).

1,570 citations

MonographDOI
19 Apr 2007
TL;DR: The Honest Broker as discussed by the authors is a book about the role of scientists in political debates and policy formation, particularly in terms of how they present their research and what considerations are important to consider when deciding, and the consequences of such choices for individual scientists and the broader scientific enterprise.
Abstract: Scientists have a choice concerning what role they should play in political debates and policy formation, particularly in terms of how they present their research. This book is about understanding this choice, what considerations are important to think about when deciding, and the consequences of such choices for the individual scientist and the broader scientific enterprise. Rather than prescribing what course of action each scientist ought to take, the book aims to identify a range of options for individual scientists to consider in making their own judgments about how they would like to position themselves in relation to policy and politics. Using examples from a range of scientific controversies and thought-provoking analogies from other walks of life, The Honest Broker challenges us all - scientists, politicians and citizens - to think carefully about how best science can contribute to policy-making and a healthy democracy.

1,569 citations

Journal ArticleDOI
TL;DR: SIENA, an event notification service that is designed and implemented to exhibit both expressiveness and scalability, is presented and the service's interface to applications, the algorithms used by networks of servers to select and deliver event notifications, and the strategies used to optimize performance are described.
Abstract: The components of a loosely coupled system are typically designed to operate by generating and responding to asynchronous events. An event notification service is an application-independent infrastructure that supports the construction of event-based systems, whereby generators of events publish event notifications to the infrastructure and consumers of events subscribe with the infrastructure to receive relevant notifications. The two primary services that should be provided to components by the infrastructure are notification selection (i. e., determining which notifications match which subscriptions) and notification delivery (i.e., routing matching notifications from publishers to subscribers). Numerous event notification services have been developed for local-area networks, generally based on a centralized server to select and deliver event notifications. Therefore, they suffer from an inherent inability to scale to wide-area networks, such as the Internet, where the number and physical distribution of the service's clients can quickly overwhelm a centralized solution. The critical challenge in the setting of a wide-area network is to maximize the expressiveness in the selection mechanism without sacrificing scalability in the delivery mechanism. This paper presents SIENA, an event notification service that we have designed and implemented to exhibit both expressiveness and scalability. We describe the service's interface to applications, the algorithms used by networks of servers to select and deliver event notifications, and the strategies used to optimize performance. We also present results of simulation studies that examine the scalability and performance of the service.

1,568 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Charles A. Dinarello1901058139668
Jie Zhang1784857221720
David Haussler172488224960
Bradley Cox1692150156200
Gang Chen1673372149819
Rodney S. Ruoff164666194902
Menachem Elimelech15754795285
Jay Hauser1552145132683
Robert E. W. Hancock15277588481
Robert Plomin151110488588
Thomas E. Starzl150162591704
Rajesh Kumar1494439140830
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023164
2022779
20216,286
20206,493
20196,063
20185,522