scispace - formally typeset
Search or ask a question
Institution

University of Colorado Boulder

EducationBoulder, Colorado, United States
About: University of Colorado Boulder is a education organization based out in Boulder, Colorado, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 48794 authors who have published 115151 publications receiving 5387328 citations. The organization is also known as: CU Boulder & UCB.
Topics: Population, Galaxy, Poison control, Solar wind, Stars


Papers
More filters
Journal ArticleDOI
Abstract: The Thermal Emission Spectrometer (TES) investigation on Mars Global Surveyor (MGS) is aimed at determining (1) the composition of surface minerals, rocks, and ices; (2) the temperature and dynamics of the atmosphere; (3) the properties of the atmospheric aerosols and clouds; (4) the nature of the polar regions; and (5) the thermophysical properties of the surface materials. These objectives are met using an infrared (5.8- to 50-μm) interferometric spectrometer, along with broadband thermal (5.1- to 150-μm) and visible/near-IR (0.3- to 2.9-μm) radiometers. The MGS TES instrument weighs 14.47 kg, consumes 10.6 W when operating, and is 23.6×35.5×40.0 cm in size. The TES data are calibrated to a 1-σ precision of 2.5−6×10−8 W cm−2 sr−1/cm−1, 1.6×10−6 W cm−2 sr−1, and ∼0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively. These instrument subsections are calibrated to an absolute accuracy of ∼4×10−8 W cm−2 sr−1/cm−1 (0.5 K at 280 K), 1–2%, and ∼1–2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-μm) carbonates exposed at the surface at a detection limit of ∼10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above a detection limit of ∼10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of ∼15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified low-inertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock.

975 citations

Journal ArticleDOI
08 May 1998-Science
TL;DR: Three biodemographic insights--concerning the correlation of death rates across age, individual differences in survival chances, and induced alterations in age patterns of fertility and mortality--offer clues and suggest research on the failure of complicated systems, on new demographic equations for evolutionary theory, and on fertility-longevity interactions.
Abstract: Old-age survival has increased substantially since 1950 Death rates decelerate with age for insects, worms, and yeast, as well as humans This evidence of extended postreproductive survival is puzzling Three biodemographic insights—concerning the correlation of death rates across age, individual differences in survival chances, and induced alterations in age patterns of fertility and mortality—offer clues and suggest research on the failure of complicated systems, on new demographic equations for evolutionary theory, and on fertility-longevity interactions Nongenetic changes account for increases in human life-spans to date Explication of these causes and the genetic license for extended survival, as well as discovery of genes and other survival attributes affecting longevity, will lead to even longer lives

974 citations

Journal ArticleDOI
G. L. Bayatian, S. Chatrchyan, G. Hmayakyan, Albert M. Sirunyan  +2060 moreInstitutions (143)
TL;DR: In this article, the authors present a detailed analysis of the performance of the Large Hadron Collider (CMS) at 14 TeV and compare it with the state-of-the-art analytical tools.
Abstract: CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider (LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking--through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start-up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb−1 or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, Bs production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb−1 to 30 fb−1. The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z0 boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing ET, B-mesons and τ's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model

973 citations

Journal ArticleDOI
TL;DR: The extreme flexibility of graphene allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like and comparable to solid-liquid adhesion energies.
Abstract: Pressurized blister tests show that the adhesion energies of graphene samples on silicon oxide are much higher than those measured in typical micromechanical structures.

973 citations

Journal ArticleDOI
TL;DR: It is shown that a polynomial learning algorithm, as defined by Valiant (1984), is obtained whenever there exists aPolynomial-time method of producing, for any sequence of observations, a nearly minimum hypothesis that is consistent with these observations.

972 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Charles A. Dinarello1901058139668
Jie Zhang1784857221720
David Haussler172488224960
Bradley Cox1692150156200
Gang Chen1673372149819
Rodney S. Ruoff164666194902
Menachem Elimelech15754795285
Jay Hauser1552145132683
Robert E. W. Hancock15277588481
Robert Plomin151110488588
Thomas E. Starzl150162591704
Rajesh Kumar1494439140830
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023164
2022779
20216,286
20206,493
20196,063
20185,522