scispace - formally typeset
Search or ask a question
Institution

University of Constantine the Philosopher

EducationNitra, Slovakia
About: University of Constantine the Philosopher is a education organization based out in Nitra, Slovakia. It is known for research contribution in the topics: Foreign language & Population. The organization has 685 authors who have published 1154 publications receiving 12918 citations.


Papers
More filters
Journal ArticleDOI
Daniel Conroy-Beam1, David M. Buss2, Kelly Asao2, Agnieszka Sorokowska3, Agnieszka Sorokowska4, Piotr Sorokowski3, Toivo Aavik5, Grace Akello6, Mohammad Madallh Alhabahba7, Charlotte Alm8, Naumana Amjad9, Afifa Anjum9, Chiemezie S. Atama10, Derya Atamtürk Duyar11, Richard Ayebare, Carlota Batres12, Mons Bendixen13, Aicha Bensafia14, Boris Bizumic15, Mahmoud Boussena14, Marina Butovskaya16, Marina Butovskaya17, Seda Can18, Katarzyna Cantarero19, Antonin Carrier20, Hakan Cetinkaya21, Ilona Croy4, Rosa María Cueto22, Marcin Czub3, Daria Dronova16, Seda Dural18, İzzet Duyar11, Berna Ertuğrul23, Agustín Espinosa22, Ignacio Estevan24, Carla Sofia Esteves25, Luxi Fang26, Tomasz Frackowiak3, Jorge Contreras Garduño27, Karina Ugalde González, Farida Guemaz, Petra Gyuris28, Mária Halamová29, Iskra Herak20, Marina Horvat30, Ivana Hromatko31, Chin Ming Hui26, Jas Laile Suzana Binti Jaafar32, Feng Jiang33, Konstantinos Kafetsios34, Tina Kavčič35, Leif Edward Ottesen Kennair13, Nicolas Kervyn20, Truong Thi Khanh Ha19, Imran Ahmed Khilji36, Nils C. Köbis37, Hoang Moc Lan19, András Láng28, Georgina R. Lennard15, Ernesto León22, Torun Lindholm8, Trinh Thi Linh19, Giulia Lopez38, Nguyen Van Luot19, Alvaro Mailhos24, Zoi Manesi39, Rocio Martinez40, Sarah L. McKerchar15, Norbert Meskó28, Girishwar Misra41, Conal Monaghan15, Emanuel C. Mora42, Alba Moya-Garófano40, Bojan Musil30, Jean Carlos Natividade43, Agnieszka Niemczyk3, George Nizharadze, Elisabeth Oberzaucher44, Anna Oleszkiewicz3, Anna Oleszkiewicz4, Mohd Sofian Omar-Fauzee45, Ike E. Onyishi10, Barış Özener11, Ariela Francesca Pagani38, Vilmante Pakalniskiene46, Miriam Parise38, Farid Pazhoohi47, Annette Pisanski42, Katarzyna Pisanski48, Katarzyna Pisanski3, Edna Lúcia Tinoco Ponciano, Camelia Popa49, Pavol Prokop50, Pavol Prokop51, Muhammad Rizwan, Mario Sainz52, Svjetlana Salkičević31, Ruta Sargautyte46, Ivan Sarmány-Schuller53, Susanne Schmehl44, Shivantika Sharad41, Razi Sultan Siddiqui54, Franco Simonetti55, Stanislava Stoyanova56, Meri Tadinac31, Marco Antonio Correa Varella57, Christin-Melanie Vauclair25, Luis Diego Vega, Dwi Ajeng Widarini, Gyesook Yoo58, Marta Zaťková29, Maja Zupančič59 
University of California, Santa Barbara1, University of Texas at Austin2, University of Wrocław3, Dresden University of Technology4, University of Tartu5, Gulu University6, Middle East University7, Stockholm University8, University of the Punjab9, University of Nigeria, Nsukka10, Istanbul University11, Franklin & Marshall College12, Norwegian University of Science and Technology13, University of Algiers14, Australian National University15, Russian Academy of Sciences16, Russian State University for the Humanities17, İzmir University of Economics18, University of Social Sciences and Humanities19, Université catholique de Louvain20, Ankara University21, Pontifical Catholic University of Peru22, Cumhuriyet University23, University of the Republic24, ISCTE – University Institute of Lisbon25, The Chinese University of Hong Kong26, National Autonomous University of Mexico27, University of Pécs28, University of Constantine the Philosopher29, University of Maribor30, University of Zagreb31, University of Malaya32, Central University of Finance and Economics33, University of Crete34, University of Primorska35, Institute of Molecular and Cell Biology36, University of Amsterdam37, Catholic University of the Sacred Heart38, VU University Amsterdam39, University of Granada40, University of Delhi41, University of Havana42, Pontifical Catholic University of Rio de Janeiro43, University of Vienna44, Universiti Utara Malaysia45, Vilnius University46, University of British Columbia47, University of Sussex48, Romanian Academy49, Comenius University in Bratislava50, Slovak Academy of Sciences51, University of Monterrey52, SAS Institute53, DHA Suffa University54, Pontifical Catholic University of Chile55, South-West University "Neofit Rilski"56, University of São Paulo57, Kyung Hee University58, University of Ljubljana59
TL;DR: This work combines this large cross-cultural sample with agent-based models to compare eight hypothesized models of human mating markets and finds that this cross-culturally universal pattern of mate choice is most consistent with a Euclidean model of mate preference integration.
Abstract: Humans express a wide array of ideal mate preferences. Around the world, people desire romantic partners who are intelligent, healthy, kind, physically attractive, wealthy, and more. In order for these ideal preferences to guide the choice of actual romantic partners, human mating psychology must possess a means to integrate information across these many preference dimensions into summaries of the overall mate value of their potential mates. Here we explore the computational design of this mate preference integration process using a large sample of n = 14,487 people from 45 countries around the world. We combine this large cross-cultural sample with agent-based models to compare eight hypothesized models of human mating markets. Across cultures, people higher in mate value appear to experience greater power of choice on the mating market in that they set higher ideal standards, better fulfill their preferences in choice, and pair with higher mate value partners. Furthermore, we find that this cross-culturally universal pattern of mate choice is most consistent with a Euclidean model of mate preference integration.

1,827 citations

Journal ArticleDOI
TL;DR: In this paper, the role of antioxidant defence systems against arsenic toxicity is discussed, and the role role of vitamin C (ascorbic acid), vitamin E (α-tocopherol), curcumin, glutathione and antioxidant enzymes such as superoxide dismutase, catalase, and peroxidase in their protective roles against arsenic-induced oxidative stress is also discussed.
Abstract: Arsenic (As) is a toxic metalloid element that is present in air, water and soil. Inorganic arsenic tends to be more toxic than organic arsenic. Examples of methylated organic arsenicals include monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. Reactive oxygen species (ROS)-mediated oxidative damage is a common denominator in arsenic pathogenesis. In addition, arsenic induces morphological changes in the integrity of mitochondria. Cascade mechanisms of free radical formation derived from the superoxide radical, combined with glutathione-depleting agents, increase the sensitivity of cells to arsenic toxicity. When both humans and animals are exposed to arsenic, they experience an increased formation of ROS/RNS, including peroxyl radicals (ROO•), the superoxide radical, singlet oxygen, hydroxyl radical (OH•) via the Fenton reaction, hydrogen peroxide, the dimethylarsenic radical, the dimethylarsenic peroxyl radical and/or oxidant-induced DNA damage. Arsenic induces the formation of oxidized lipids which in turn generate several bioactive molecules (ROS, peroxides and isoprostanes), of which aldehydes [malondialdehyde (MDA) and 4-hydroxy-nonenal (HNE)] are the major end products. This review discusses aspects of chronic and acute exposures of arsenic in the etiology of cancer, cardiovascular disease (hypertension and atherosclerosis), neurological disorders, gastrointestinal disturbances, liver disease and renal disease, reproductive health effects, dermal changes and other health disorders. The role of antioxidant defence systems against arsenic toxicity is also discussed. Consideration is given to the role of vitamin C (ascorbic acid), vitamin E (α-tocopherol), curcumin, glutathione and antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase in their protective roles against arsenic-induced oxidative stress.

1,040 citations

Journal ArticleDOI
TL;DR: The role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD is discussed and several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression.
Abstract: The neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD), are age-related disorders characterized by the deposition of abnormal forms of specific proteins in the brain. AD is characterized by the presence of extracellular amyloid plaques and intraneuronal neurofibrillary tangles in the brain. Biochemical analysis of amyloid plaques revealed that the main constituent is fibrillar aggregates of a 39-42 residue peptide referred to as the amyloid-β protein (Aβ). PD is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. One of the pathological hallmarks of PD is the presence of intracellular inclusions called Lewy bodies that consist of aggregates of the presynaptic soluble protein called α-synuclein. There are various factors influencing the pathological depositions, and in general, the cause of neuronal death in neurological disorders appears to be multifactorial. However, it is clear, that the underlying factor in the neurological disorders is increased oxidative stress substantiated by the findings that the protein side-chains are modified either directly by reactive oxygen species (ROS) or reactive nitrogen species (RNS), or indirectly, by the products of lipid peroxidation. The increased level of oxidative stress in AD brain is reflected by the increased brain content of iron (Fe) and copper (Cu) both capable of stimulating free radical formation (e.g. hydroxyl radicals via Fenton reaction), increased protein and DNA oxidation in the AD brain, enhanced lipid peroxidation, decreased level of cytochrome c oxidase and advanced glycation end products (AGEs), carbonyls, malondialdehyde (MDA), peroxynitrite, and heme oxygenase-1 (HO-1). AGEs, mainly through their interaction with receptors for advanced glycation end products (RAGEs), further activate signaling pathways, inducing formation of proinflammatory cytokines such as interleukin-6 (IL-6). The conjugated aromatic ring of tyrosine residues is a target for free-radical attack, and accumulation of dityrosine and 3-nitrotyrosine has also been reported in AD brain. The oxidative stress linked with PD is supported by both postmortem studies and by studies showing the increased level of oxidative stress in the substantia nigra pars compacta, demonstrating thus the capacity of oxidative stress to induce nigral cell degeneration. Markers of lipid peroxidation include 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-nonenal (4-ONE), acrolein, and 4-oxo-trans-2-hexenal, all of which are well recognized neurotoxic agents. In addition, other important factors, involving inflammation, toxic action of nitric oxide (NO·), defects in protein clearance, and mitochondrial dysfunction all contribute to the etiology of PD. It has been suggested that several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression. The aim of this review is to discuss the role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD. Attention is focused on the metal-induced formation of free radicals and the protective role of antioxidants [glutathione (GSH), vitamin C (ascorbic acid)], vitamin E (α-Tocopherol), lipoic acid, flavonoids [catechins, epigallocatechin gallate (EGCG)], and curcumin. An alternate hypothesis topic in AD is also discussed.

956 citations

Journal ArticleDOI
TL;DR: In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.
Abstract: Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC) They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits

599 citations

Journal ArticleDOI
TL;DR: It was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values, and a linear relationship existed between ACW and phenolic contents (r = 0.99).
Abstract: The study objective was to investigate total phenolic content using Folin-Ciocalteu’s method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g−1 GAE; 7.53 µmol AA·g−1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols.

304 citations


Authors

Showing all 699 results

NameH-indexPapersCitations
René Kizek6167216554
Petr Hájek4848516562
Igor Tvaroška301383029
Jan Prasko292343283
Marian Valko2913129003
Jiri Sochor271052846
Alexander V. Sirotkin261932525
Tunde Jurikova26802714
Jozef Laurincik23791390
Klaudia Jomová21685868
Anton Trník191561149
János Csapó191401962
Rivka Levitan1737896
Stefan Benus1748985
František Petrovič1665759
Network Information
Related Institutions (5)
Masaryk University
24.6K papers, 470.3K citations

76% related

Comenius University in Bratislava
20.5K papers, 439.1K citations

74% related

National University of Malaysia
41.2K papers, 552.6K citations

74% related

Universiti Teknologi MARA
27.7K papers, 223.8K citations

72% related

Universiti Putra Malaysia
36.7K papers, 647.6K citations

72% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202222
2021140
2020121
2019132
2018108