scispace - formally typeset
Search or ask a question
Institution

University of Copenhagen

EducationCopenhagen, Denmark
About: University of Copenhagen is a education organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Population & Galaxy. The organization has 57645 authors who have published 149740 publications receiving 5903093 citations. The organization is also known as: Copenhagen University & Københavns Universitet.


Papers
More filters
Journal ArticleDOI
18 Oct 2011-BMJ
TL;DR: The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate.
Abstract: Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate

22,227 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors, and derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimensions.

16,189 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
TL;DR: In this paper, the estimation and testing of long-run relations in economic modeling are addressed, starting with a vector autoregressive (VAR) model, the hypothesis of cointegration is formulated as a hypothesis of reduced rank of the long run impact matrix.
Abstract: The estimation and testing of long-run relations in economic modeling are addressed. Starting with a vector autoregressive (VAR) model, the hypothesis of cointegration is formulated as the hypothesis of reduced rank of the long-run impact matrix. This is given in a simple parametric form that allows the application of the method of maximum likelihood and likelihood ratio tests. In this way, one can derive estimates and test statistics for the hypothesis of a given number of cointegration vectors, as well as estimates and tests for linear hypotheses about the cointegration vectors and their weights. The asymptotic inferences concerning the number of cointegrating vectors involve nonstandard distributions. Inference concerning linear restrictions on the cointegration vectors and their weights can be performed using the usual chi squared methods. In the case of linear restrictions on beta, a Wald test procedure is suggested. The proposed methods are illustrated by money demand data from the Danish and Finnish economies.

12,449 citations

Journal ArticleDOI
TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Abstract: Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.

10,584 citations


Authors

Showing all 58387 results

NameH-indexPapersCitations
Michael Karin236704226485
Matthias Mann221887230213
Peer Bork206697245427
Ronald Klein1941305149140
Kenneth S. Kendler1771327142251
Dorret I. Boomsma1761507136353
Ramachandran S. Vasan1721100138108
Unnur Thorsteinsdottir167444121009
Mika Kivimäki1661515141468
Jun Wang1661093141621
Anders Björklund16576984268
Gerald I. Shulman164579109520
Jaakko Kaprio1631532126320
Veikko Salomaa162843135046
Daniel J. Jacob16265676530
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

94% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Karolinska Institutet
121.1K papers, 6M citations

93% related

Boston University
119.6K papers, 6.2M citations

93% related

University College London
210.6K papers, 9.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023370
20221,266
202110,693
20209,956
20199,189
20188,620