scispace - formally typeset
Search or ask a question
Institution

University of Copenhagen

EducationCopenhagen, Denmark
About: University of Copenhagen is a education organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Population & Galaxy. The organization has 57645 authors who have published 149740 publications receiving 5903093 citations. The organization is also known as: Copenhagen University & Københavns Universitet.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review emerging data suggesting that microbial tryptophan catabolites resulting from proteolysis are influencing host health and suggest that these metabolites activate the immune system through binding to the aryl hydrocarbon receptor (AHR), enhance the intestinal epithelial barrier, stimulate gastrointestinal motility, as well as secretion of gut hormones, exert anti-inflammatory, anti-oxidative or toxic effects in systemic circulation, and putatively modulate gut microbial composition.
Abstract: Accumulating evidence implicates metabolites produced by gut microbes as crucial mediators of diet-induced host-microbial cross-talk. Here, we review emerging data suggesting that microbial tryptophan catabolites resulting from proteolysis are influencing host health. These metabolites are suggested to activate the immune system through binding to the aryl hydrocarbon receptor (AHR), enhance the intestinal epithelial barrier, stimulate gastrointestinal motility, as well as secretion of gut hormones, exert anti-inflammatory, anti-oxidative or toxic effects in systemic circulation, and putatively modulate gut microbial composition. Tryptophan catabolites thus affect various physiological processes and may contribute to intestinal and systemic homeostasis in health and disease.

888 citations

Journal ArticleDOI
TL;DR: A metagenome-wide association study on stools from individuals with atherosclerotic cardiovascular disease and healthy controls is performed, identifying microbial strains and functions associated with the disease.
Abstract: The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular health. Although drug treatment represents a confounding factor, ACVD status, and not current drug use, is the major distinguishing feature in this cohort. We identify common themes by comparison with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2 diabetes), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases. The gut microbiota may play a role in cardiovascular diseases. Here, the authors perform a metagenome-wide association study on stools from individuals with atherosclerotic cardiovascular disease and healthy controls, identifying microbial strains and functions associated with the disease.

887 citations

Journal ArticleDOI
01 Jun 1978
TL;DR: A rapid method for distinction between gram-negative and grampositive bacteria by means of a 3% solution of potassium hydroxide is tested, with one exception only, a Bacillus macerans strain, which was definately gram- negative on staining.
Abstract: A rapid method for distinction between gram-negative and grampositive bacteria by means of a 3% solution of potassium hydroxide is tested on 71 gram-positive and 55 gram-negative bacterial strains. The method proved reliable with one exception only, a Bacillus macerans strain. That strain was definately gram-negative on staining. Other Bacillus strains were proved gram-positive by the test, even those being gram-negative on staining.

887 citations

Journal ArticleDOI
01 Mar 1992
TL;DR: This paper sets out an approach to CSCW as a field of research which it is believed provides a coherent conceptual framework for this area, suggesting that it should be concerned with the support requirements of cooperative work arrangements.
Abstract: The topic of Computer Supported Cooperative Work (CSCW) has attracted much attention in the last few years. While the field is obviously still in the process of development, there is a marked ambiguity about the exact focus of the field. This lack of focus may hinder its further development and lead to its dissipation. In this paper we set out an approach to CSCW as a field of research which we believe provides a coherent conceptual framework for this area, suggesting that it should be concerned with thesupport requirements of cooperative work arrangements. This provides a more principled, comprehensive, and, in our opinion, more useful conception of the field than that provided by the conception of CSCW as being focused on computer support for groups. We then investigate the consequences of taking this alternative conception seriously, in terms of research directions for the field. As an indication of the fruits of this approach, we discuss the concept of ‘articulation work’ and its relevance to CSCW. This raises a host of interesting problems that are marginalized in the work on small group support but critical to the success of CSCW systems ‘in the large’, i. e., that are designed to meet current work requirements in the everyday world.

886 citations

Journal ArticleDOI
Moinuddin Ahmed1, Kevin J. Anchukaitis2, Kevin J. Anchukaitis3, Asfawossen Asrat4, H. P. Borgaonkar5, Martina Braida6, Brendan M. Buckley2, Ulf Büntgen7, Brian M. Chase8, Brian M. Chase9, Duncan A. Christie10, Duncan A. Christie11, Edward R. Cook2, Mark A. J. Curran12, Mark A. J. Curran13, Henry F. Diaz14, Jan Esper15, Ze-Xin Fan16, Narayan Prasad Gaire17, Quansheng Ge18, Joelle Gergis19, J. Fidel González-Rouco20, Hugues Goosse21, Stefan W. Grab22, Nicholas E. Graham23, Rochelle Graham23, Martin Grosjean24, Sami Hanhijärvi25, Darrell S. Kaufman26, Thorsten Kiefer, Katsuhiko Kimura27, Atte Korhola25, Paul J. Krusic28, Antonio Lara11, Antonio Lara10, Anne-Marie Lézine29, Fredrik Charpentier Ljungqvist28, Andrew Lorrey30, Jürg Luterbacher31, Valérie Masson-Delmotte29, Danny McCarroll32, Joseph R. McConnell33, Nicholas P. McKay26, Mariano S. Morales34, Andrew D. Moy13, Andrew D. Moy12, Robert Mulvaney35, Ignacio A. Mundo34, Takeshi Nakatsuka36, David J. Nash22, David J. Nash37, Raphael Neukom7, Sharon E. Nicholson38, Hans Oerter39, Jonathan G. Palmer40, Jonathan G. Palmer41, Steven J. Phipps41, María Prieto32, Andrés Rivera42, Masaki Sano36, Mirko Severi43, Timothy M. Shanahan44, Xuemei Shao18, Feng Shi, Michael Sigl33, Jason E. Smerdon2, Olga Solomina45, Eric J. Steig46, Barbara Stenni6, Meloth Thamban47, Valerie Trouet48, Chris S. M. Turney41, Mohammed Umer4, Tas van Ommen13, Tas van Ommen12, Dirk Verschuren49, A. E. Viau50, Ricardo Villalba34, Bo Møllesøe Vinther51, Lucien von Gunten, Sebastian Wagner, Eugene R. Wahl14, Heinz Wanner24, Johannes P. Werner31, James W. C. White52, Koh Yasue53, Eduardo Zorita 
Federal Urdu University1, Columbia University2, Woods Hole Oceanographic Institution3, Addis Ababa University4, Indian Institute of Tropical Meteorology5, University of Trieste6, Swiss Federal Institute for Forest, Snow and Landscape Research7, University of Bergen8, University of Montpellier9, Austral University of Chile10, University of Chile11, University of Tasmania12, Australian Antarctic Division13, National Oceanic and Atmospheric Administration14, University of Mainz15, Xishuangbanna Tropical Botanical Garden16, Nepal Academy of Science and Technology17, Chinese Academy of Sciences18, University of Melbourne19, Complutense University of Madrid20, Université catholique de Louvain21, University of the Witwatersrand22, Hydrologic Research Center23, University of Bern24, University of Helsinki25, Northern Arizona University26, Fukushima University27, Stockholm University28, Université Paris-Saclay29, National Institute of Water and Atmospheric Research30, University of Giessen31, Swansea University32, Desert Research Institute33, National Scientific and Technical Research Council34, British Antarctic Survey35, Nagoya University36, University of Brighton37, Florida State University38, Alfred Wegener Institute for Polar and Marine Research39, University of Exeter40, University of New South Wales41, Centro de Estudios Científicos42, University of Florence43, University of Texas at Austin44, Russian Academy of Sciences45, University of Washington46, National Centre for Antarctic and Ocean Research47, University of Arizona48, Ghent University49, University of Ottawa50, University of Copenhagen51, University of Colorado Boulder52, Shinshu University53
TL;DR: The authors reconstructed past temperatures for seven continental-scale regions during the past one to two millennia and found that the most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century.
Abstract: Past global climate changes had strong regional expression To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years

885 citations


Authors

Showing all 58387 results

NameH-indexPapersCitations
Michael Karin236704226485
Matthias Mann221887230213
Peer Bork206697245427
Ronald Klein1941305149140
Kenneth S. Kendler1771327142251
Dorret I. Boomsma1761507136353
Ramachandran S. Vasan1721100138108
Unnur Thorsteinsdottir167444121009
Mika Kivimäki1661515141468
Jun Wang1661093141621
Anders Björklund16576984268
Gerald I. Shulman164579109520
Jaakko Kaprio1631532126320
Veikko Salomaa162843135046
Daniel J. Jacob16265676530
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

94% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Karolinska Institutet
121.1K papers, 6M citations

93% related

Boston University
119.6K papers, 6.2M citations

93% related

University College London
210.6K papers, 9.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023370
20221,266
202110,693
20209,956
20199,189
20188,620