scispace - formally typeset
Search or ask a question
Institution

University of Copenhagen

EducationCopenhagen, Denmark
About: University of Copenhagen is a education organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Population & Galaxy. The organization has 57645 authors who have published 149740 publications receiving 5903093 citations. The organization is also known as: Copenhagen University & Københavns Universitet.


Papers
More filters
Journal ArticleDOI
28 Mar 2013-Nature
TL;DR: It is shown that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application, providing direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membranes.
Abstract: Conformation-specific antibodies capable of monitoring the activation state of a G-protein-coupled seven-transmembrane receptor, the β2-adrenoceptor, reveals receptor and G-protein activation not only in the plasma membrane, but also in the endosome. It is widely assumed that G-protein-linked signalling occurs only at the plasma membrane. In this study, Mark von Zastrow and colleagues use conformation-specific single-chain antibodies to directly probe the activation of the β2-adrenoceptor, which is a prototypical G-protein-coupled receptor, and its cognate G protein, Gs, in living cells. They show that classical or canonical G-protein-linked signalling occurs from endosomes as well as from the plasma membrane. A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution1. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins2,3, or GPCR activation elicits a discrete form of persistent G protein signalling4,5,6,7,8,9, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response10. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the β2-adrenoceptor, a prototypical GPCR11, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.

702 citations

Journal ArticleDOI
TL;DR: This paper introduces urban land teleconnections as a conceptual framework that explicitly links land changes to underlying urbanization dynamics and examines several environmental “grand challenges” and discusses how the concept could help research communities frame scientific inquiries.
Abstract: This paper introduces urban land teleconnections as a conceptual framework that explicitly links land changes to underlying urbanization dynamics. We illustrate how three key themes that are currently addressed separately in the urban sustainability and land change literatures can lead to incorrect conclusions and misleading results when they are not examined jointly: the traditional system of land classification that is based on discrete categories and reinforces the false idea of a rural–urban dichotomy; the spatial quantification of land change that is based on place-based relationships, ignoring the connections between distant places, especially between urban functions and rural land uses; and the implicit assumptions about path dependency and sequential land changes that underlie current conceptualizations of land transitions. We then examine several environmental “grand challenges” and discuss how urban land teleconnections could help research communities frame scientific inquiries. Finally, we point to existing analytical approaches that can be used to advance development and application of the concept.

701 citations

Journal ArticleDOI
TL;DR: This model provides a model to explain how trimethylated Lys 27 of histone 3 (H3K27me3), which is catalysed by the EZH2-containing Polycomb Repressive Complex 2 (PRC2), is maintained in proliferating cells, and suggests that once the H3K 27me3 is established, it recruits the PRC2 complex to maintain the mark at sites of DNA replication, thereby preserving chromatin structure and transcriptional programs.
Abstract: Organization of chromatin by epigenetic mechanisms is essential for establishing and maintaining cellular identity in developing and adult organisms. A key question that remains unresolved about this process is how epigenetic marks are transmitted to the next cell generation during cell division. Here we provide a model to explain how trimethylated Lys 27 of histone 3 (H3K27me3), which is catalysed by the EZH2-containing Polycomb Repressive Complex 2 (PRC2), is maintained in proliferating cells. We show that the PRC2 complex binds to the H3K27me3 mark and colocalizes with this mark in G1 phase and with sites of ongoing DNA replication. Efficient binding requires an intact trimeric PRC2 complex containing EZH2, EED and SUZ12, but is independent of the catalytic SET domain of EZH2. Using a heterologous reporter system, we show that transient recruitment of the PRC2 complex to chromatin, upstream of the transcriptional start site, is sufficient to maintain repression through endogenous PRC2 during subsequent cell divisions. Thus, we suggest that once the H3K27me3 is established, it recruits the PRC2 complex to maintain the mark at sites of DNA replication, leading to methylation of H3K27 on the daughter strands during incorporation of newly synthesized histones. This mechanism ensures maintenance of the H3K27me3 epigenetic mark in proliferating cells, not only during DNA replication when histones synthesized de novo are incorporated, but also outside S phase, thereby preserving chromatin structure and transcriptional programs.

701 citations

Journal ArticleDOI
TL;DR: It is reported here that deficient PAI1 expression in host mice prevented local invasion and tumor vascularization of transplanted malignant keratinocytes and this experimental evidence demonstrates that host-produced PAI is essential for cancer cell invasion and angiogenesis.
Abstract: Acquisition of invasive/metastatic potential through protease expression is an essential event in tumor progression. High levels of components of the plasminogen activation system, including urokinase, but paradoxically also its inhibitor, plasminogen activator inhibitor 1 (PAI1), have been correlated with a poor prognosis for some cancers. We report here that deficient PAI1 expression in host mice prevented local invasion and tumor vascularization of transplanted malignant keratinocytes. When this PAI1 deficiency was circumvented by intravenous injection of a replication-defective adenoviral vector expressing human PAI1, invasion and associated angiogenesis were restored. This experimental evidence demonstrates that host-produced PAI is essential for cancer cell invasion and angiogenesis.

701 citations

Journal ArticleDOI
18 May 2012-PLOS ONE
TL;DR: Overall, the results identify a novel systemic inflammatory COPD phenotype that may be the target of specific research and treatment and show associations but do not prove causality.
Abstract: Background: Because chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, the identification of specific clinical phenotypes is key to developing more effective therapies. To explore if the persistence of systemic inflammation is associated with poor clinical outcomes in COPD we assessed patients recruited to the well-characterized ECLIPSE cohort (NCT00292552). Methods and Findings: Six inflammatory biomarkers in peripheral blood (white blood cells (WBC) count and CRP, IL-6, IL-8, fibrinogen and TNF-a levels) were quantified in 1,755 COPD patients, 297 smokers with normal spirometry and 202 nonsmoker controls that were followed-up for three years. We found that, at baseline, 30% of COPD patients did not show evidence of systemic inflammation whereas 16% had persistent systemic inflammation. Even though pulmonary abnormalities were similar in these two groups, persistently inflamed patients during follow-up had significantly increased all-cause mortality (13% vs. 2%, p,0.001) and exacerbation frequency (1.5 (1.5) vs. 0.9 (1.1) per year, p,0.001) compared to non-inflamed ones. As a descriptive study our results show associations but do not prove causality. Besides this, the inflammatory response is complex and we studied only a limited panel of biomarkers, albeit they are those investigated by the majority of previous studies and are often and easily measured in clinical practice. Conclusions: Overall, these results identify a novel systemic inflammatory COPD phenotype that may be the target of specific research and treatment.

700 citations


Authors

Showing all 58387 results

NameH-indexPapersCitations
Michael Karin236704226485
Matthias Mann221887230213
Peer Bork206697245427
Ronald Klein1941305149140
Kenneth S. Kendler1771327142251
Dorret I. Boomsma1761507136353
Ramachandran S. Vasan1721100138108
Unnur Thorsteinsdottir167444121009
Mika Kivimäki1661515141468
Jun Wang1661093141621
Anders Björklund16576984268
Gerald I. Shulman164579109520
Jaakko Kaprio1631532126320
Veikko Salomaa162843135046
Daniel J. Jacob16265676530
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

94% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Karolinska Institutet
121.1K papers, 6M citations

93% related

Boston University
119.6K papers, 6.2M citations

93% related

University College London
210.6K papers, 9.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023370
20221,266
202110,693
20209,956
20199,189
20188,620