scispace - formally typeset
Search or ask a question
Institution

University of Copenhagen

EducationCopenhagen, Denmark
About: University of Copenhagen is a education organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Population & Galaxy. The organization has 57645 authors who have published 149740 publications receiving 5903093 citations. The organization is also known as: Copenhagen University & Københavns Universitet.


Papers
More filters
Journal ArticleDOI
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.

10,401 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Journal ArticleDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet2, Gabriel A. Al-Ghalith3, Harriet Alexander4, Harriet Alexander5, Eric J. Alm6, Manimozhiyan Arumugam7, Francesco Asnicar8, Yang Bai9, Jordan E. Bisanz10, Kyle Bittinger11, Asker Daniel Brejnrod7, Colin J. Brislawn12, C. Titus Brown4, Benjamin J. Callahan13, Andrés Mauricio Caraballo-Rodríguez14, John Chase1, Emily K. Cope1, Ricardo Silva14, Christian Diener15, Pieter C. Dorrestein14, Gavin M. Douglas16, Daniel M. Durall17, Claire Duvallet6, Christian F. Edwardson, Madeleine Ernst18, Madeleine Ernst14, Mehrbod Estaki17, Jennifer Fouquier19, Julia M. Gauglitz14, Sean M. Gibbons20, Sean M. Gibbons15, Deanna L. Gibson17, Antonio Gonzalez14, Kestrel Gorlick1, Jiarong Guo21, Benjamin Hillmann3, Susan Holmes22, Hannes Holste14, Curtis Huttenhower23, Curtis Huttenhower24, Gavin A. Huttley25, Stefan Janssen26, Alan K. Jarmusch14, Lingjing Jiang14, Benjamin D. Kaehler25, Benjamin D. Kaehler27, Kyo Bin Kang28, Kyo Bin Kang14, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley29, Dan Knights3, Irina Koester14, Tomasz Kosciolek14, Jorden Kreps1, Morgan G. I. Langille16, Joslynn S. Lee30, Ruth E. Ley31, Ruth E. Ley32, Yong-Xin Liu, Erikka Loftfield2, Catherine A. Lozupone19, Massoud Maher14, Clarisse Marotz14, Bryan D Martin20, Daniel McDonald14, Lauren J. McIver24, Lauren J. McIver23, Alexey V. Melnik14, Jessica L. Metcalf33, Sydney C. Morgan17, Jamie Morton14, Ahmad Turan Naimey1, Jose A. Navas-Molina34, Jose A. Navas-Molina14, Louis-Félix Nothias14, Stephanie B. Orchanian, Talima Pearson1, Samuel L. Peoples35, Samuel L. Peoples20, Daniel Petras14, Mary L. Preuss36, Elmar Pruesse19, Lasse Buur Rasmussen7, Adam R. Rivers37, Michael S. Robeson38, Patrick Rosenthal36, Nicola Segata8, Michael Shaffer19, Arron Shiffer1, Rashmi Sinha2, Se Jin Song14, John R. Spear39, Austin D. Swafford, Luke R. Thompson40, Luke R. Thompson41, Pedro J. Torres29, Pauline Trinh20, Anupriya Tripathi14, Peter J. Turnbaugh10, Sabah Ul-Hasan42, Justin J. J. van der Hooft43, Fernando Vargas, Yoshiki Vázquez-Baeza14, Emily Vogtmann2, Max von Hippel44, William A. Walters31, Yunhu Wan2, Mingxun Wang14, Jonathan Warren45, Kyle C. Weber46, Kyle C. Weber37, Charles H. D. Williamson1, Amy D. Willis20, Zhenjiang Zech Xu14, Jesse R. Zaneveld20, Yilong Zhang47, Qiyun Zhu14, Rob Knight14, J. Gregory Caporaso1 
TL;DR: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and R.K.P. and partial support was also provided by the following: grants NIH U54CA143925 and U54MD012388.
Abstract: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and 1565057 to R.K. Partial support was also provided by the following: grants NIH U54CA143925 (J.G.C. and T.P.) and U54MD012388 (J.G.C. and T.P.); grants from the Alfred P. Sloan Foundation (J.G.C. and R.K.); ERCSTG project MetaPG (N.S.); the Strategic Priority Research Program of the Chinese Academy of Sciences QYZDB-SSW-SMC021 (Y.B.); the Australian National Health and Medical Research Council APP1085372 (G.A.H., J.G.C., Von Bing Yap and R.K.); the Natural Sciences and Engineering Research Council (NSERC) to D.L.G.; and the State of Arizona Technology and Research Initiative Fund (TRIF), administered by the Arizona Board of Regents, through Northern Arizona University. All NCI coauthors were supported by the Intramural Research Program of the National Cancer Institute. S.M.G. and C. Diener were supported by the Washington Research Foundation Distinguished Investigator Award.

8,821 citations

Journal ArticleDOI
TL;DR: SignalP 4.0 was the best signal-peptide predictor for all three organism types but was not in all cases as good as SignalP 3.0 according to cleavage-site sensitivity or signal- peptide correlation when there are no transmembrane proteins present.
Abstract: We benchmarked SignalP 4.0 against SignalP 3.0 and ten other signal peptide prediction algorithms (Fig. 1). We compared prediction performance using the Matthews correlation coefficient16, for which each sequence was counted as a true or false positive or negative. To test SignalP 4.0 performance, we did not use data that had been used in training the networks or selecting the optimal architecture, and the test data did not contain homologs to the training and optimization data (Supplementary Methods). The test set for SignalP 3.0 was also independent of the training set because we removed sequences used to construct SignalP 3.0 and their homologs from the benchmark data. For other algorithms more recent than SignalP 3.0, the benchmark data may include data used to train the methods, possibly leading to slight overestimations of their performance. Our results show that SignalP 4.0 was the best signal-peptide predictor for all three organism types (Fig. 1). This comes at a price, however, because SignalP 4.0 was not in all cases as good as SignalP 3.0 according to cleavage-site sensitivity or signal-peptide correlation when there are no transmembrane proteins present (Supplementary Results). An ideal method would have the best SignalP 4.0: discriminating signal peptides from transmembrane regions

8,370 citations

Book
26 Apr 1990
TL;DR: In this article, a strategy for redesigning jobs to reduce unnecessary stress and improve productivity and job satisfaction is proposed, which is based on the concept of job redesigning and re-designing.
Abstract: Suggests a strategy for redesigning jobs to reduce unnecessary stress and improve productivity and job satisfaction.

8,329 citations


Authors

Showing all 58387 results

NameH-indexPapersCitations
Michael Karin236704226485
Matthias Mann221887230213
Peer Bork206697245427
Ronald Klein1941305149140
Kenneth S. Kendler1771327142251
Dorret I. Boomsma1761507136353
Ramachandran S. Vasan1721100138108
Unnur Thorsteinsdottir167444121009
Mika Kivimäki1661515141468
Jun Wang1661093141621
Anders Björklund16576984268
Gerald I. Shulman164579109520
Jaakko Kaprio1631532126320
Veikko Salomaa162843135046
Daniel J. Jacob16265676530
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

94% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Karolinska Institutet
121.1K papers, 6M citations

93% related

Boston University
119.6K papers, 6.2M citations

93% related

University College London
210.6K papers, 9.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023370
20221,266
202110,693
20209,956
20199,189
20188,620