scispace - formally typeset
Search or ask a question
Institution

University of Copenhagen

EducationCopenhagen, Denmark
About: University of Copenhagen is a education organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Population & Galaxy. The organization has 57645 authors who have published 149740 publications receiving 5903093 citations. The organization is also known as: Copenhagen University & Københavns Universitet.


Papers
More filters
Journal ArticleDOI
Peter J. Campbell1, Gad Getz2, Jan O. Korbel3, Joshua M. Stuart4  +1329 moreInstitutions (238)
06 Feb 2020-Nature
TL;DR: The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.
Abstract: Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1,2,3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10,11,12,13,14,15,16,17,18.

1,600 citations

Journal ArticleDOI
TL;DR: In this paper, the impacts of global climate change on food systems are expected to be widespread, complex, geographically and temporally variable, and profoundly influenced by socioeconomic conditions, and some synergies among food security, adaptati...
Abstract: Food systems contribute 19%–29% of global anthropogenic greenhouse gas (GHG) emissions, releasing 9,800–16,900 megatonnes of carbon dioxide equivalent (MtCO2e) in 2008. Agricultural production, including indirect emissions associated with land-cover change, contributes 80%–86% of total food system emissions, with significant regional variation. The impacts of global climate change on food systems are expected to be widespread, complex, geographically and temporally variable, and profoundly influenced by socioeconomic conditions. Historical statistical studies and integrated assessment models provide evidence that climate change will affect agricultural yields and earnings, food prices, reliability of delivery, food quality, and, notably, food safety. Low-income producers and consumers of food will be more vulnerable to climate change owing to their comparatively limited ability to invest in adaptive institutions and technologies under increasing climatic risks. Some synergies among food security, adaptati...

1,598 citations

Journal ArticleDOI
TL;DR: An up-to-date analysis of all GPCR drugs and agents in clinical trials is reported, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs act at 108 unique GPCRs.
Abstract: G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

1,588 citations

Journal ArticleDOI
TL;DR: A unified theory of visual recognition and attentional selection is developed by integrating the biased-choice model for single-stimulus recognition with a choice model for selection from multielement displays in a race model framework.
Abstract: A unified theory of visual recognition and attentional selection is developed by integrating the biased-choice model for single-stimulus recognition (Luce, 1963; Shepard, 1957) with a choice model for selection from multielement displays (Bundesen, Pedersen, & Larsen, 1984) in a race model framework. Mathematically, the theory is tractable, and it specifies the computations necessary for selection. The theory is applied to extant findings from a broad range of experimental paradigms. The findings include effects of object integrality in selective report, number and spatial position of targets in divided-attention paradigms, selection criterion and number of distracters in focused-attention paradigms, delay of selection cue in partial report, and consistent practice in search. On the whole, the quantitative fits are encouraging.

1,586 citations

Journal ArticleDOI
TL;DR: Treatment of postmenopausal osteoporosis with strontium ranelate leads to early and sustained reductions in the risk of vertebral fractures.
Abstract: background Osteoporotic structural damage and bone fragility result from reduced bone formation and increased bone resorption. In a phase 2 clinical trial, strontium ranelate, an orally active drug that dissociates bone remodeling by increasing bone formation and decreasing bone resorption, has been shown to reduce the risk of vertebral fractures and to increase bone mineral density. methods To evaluate the efficacy of strontium ranelate in preventing vertebral fractures in a phase 3 trial, we randomly assigned 1649 postmenopausal women with osteoporosis (low bone mineral density) and at least one vertebral fracture to receive 2 g of oral strontium ranelate per day or placebo for three years. We gave calcium and vitamin D supplements to both groups before and during the study. Vertebral radiographs were obtained annually, and measurements of bone mineral density were performed every six months. results New vertebral fractures occurred in fewer patients in the strontium ranelate group than in the placebo group, with a risk reduction of 49 percent in the first year of treatment and 41 percent during the three-year study period (relative risk, 0.59; 95 percent confidence interval, 0.48 to 0.73). Strontium ranelate increased bone mineral density at month 36 by 14.4 percent at the lumbar spine and 8.3 percent at the femoral neck (P<0.001 for both comparisons). There were no significant differences between the groups in the incidence of serious adverse events. conclusions Treatment of postmenopausal osteoporosis with strontium ranelate leads to early and sustained reductions in the risk of vertebral fractures.

1,582 citations


Authors

Showing all 58387 results

NameH-indexPapersCitations
Michael Karin236704226485
Matthias Mann221887230213
Peer Bork206697245427
Ronald Klein1941305149140
Kenneth S. Kendler1771327142251
Dorret I. Boomsma1761507136353
Ramachandran S. Vasan1721100138108
Unnur Thorsteinsdottir167444121009
Mika Kivimäki1661515141468
Jun Wang1661093141621
Anders Björklund16576984268
Gerald I. Shulman164579109520
Jaakko Kaprio1631532126320
Veikko Salomaa162843135046
Daniel J. Jacob16265676530
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

94% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Karolinska Institutet
121.1K papers, 6M citations

93% related

Boston University
119.6K papers, 6.2M citations

93% related

University College London
210.6K papers, 9.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023370
20221,266
202110,693
20209,956
20199,189
20188,620