scispace - formally typeset
Search or ask a question
Institution

University of Córdoba (Spain)

EducationCordova, Spain
About: University of Córdoba (Spain) is a education organization based out in Cordova, Spain. It is known for research contribution in the topics: Population & Catalysis. The organization has 12006 authors who have published 22998 publications receiving 537842 citations. The organization is also known as: University of Córdoba (Spain) & Universidad de Córdoba.


Papers
More filters
Journal ArticleDOI
TL;DR: Number of stems per plant appears to be the most influential factor, although further research is required to confirm this and it is not wholly clear to which component of yield this should really be ascribed.

124 citations

Journal ArticleDOI
TL;DR: Results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb 5-Reductase, the component partners previously described for ARC.
Abstract: Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes. By studying transcriptional regulation, enzyme approaches, activity assays with in vitro purified proteins and in vivo and in vitro NO determinations, we have addressed the role of NR and Amidoxime Reducing Component (ARC) in the NO synthesis process. N\R and ARC were intimately related both at transcriptional and activity level. Thus, arc mutants showed high NIA1 (NR gene) expression and NR activity. Conversely, mutants without active NR displayed an increased ARC expression in nitrite medium. Our results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb5-Reductase, the component partners previously described for ARC (proposed as NOFNiR, Nitric Oxide-Forming Nitrite Reductase). This NR-ARC dual system would be able to produce NO in the presence of nitrate, condition under which NR is unable to do it.

124 citations

Journal ArticleDOI
TL;DR: The present narrative review focuses on phenols, part of red wine and virgin olive oil, discussing the evidence of their effects on lipids, blood pressure, atheromatous plaque and glucose metabolism.
Abstract: A growing interest has emerged in the beneficial effects of plant-based diets for the prevention of cardiovascular disease, diabetes and obesity. The Mediterranean diet, one of the most widely evaluated dietary patterns in scientific literature, includes in its nutrients two fluid foods: olive oil, as the main source of fats, and a low-to-moderate consumption of wine, mainly red, particularly during meals. Current mechanisms underlying the beneficial effects of the Mediterranean diet include a reduction in inflammatory and oxidative stress markers, improvement in lipid profile, insulin sensitivity and endothelial function, as well as antithrombotic properties. Most of these effects are attributable to bioactive ingredients including polyphenols, mono- and poly-unsaturated fatty acids. Polyphenols are a heterogeneous group of phytochemicals containing phenol rings. The principal classes of red wine polyphenols include flavonols (quercetin and myricetin), flavanols (catechin and epicatechin), anthocyanin and stilbenes (resveratrol). Olive oil has at least 30 phenolic compounds. Among them, the main are simple phenols (tyrosol and hydroxytyrosol), secoroids and lignans. The present narrative review focuses on phenols, part of red wine and virgin olive oil, discussing the evidence of their effects on lipids, blood pressure, atheromatous plaque and glucose metabolism.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the use of narrow-band indices formulated in the visible spectral region at leaf and canopy levels to estimate carotenoid content was explored in a pine forest affected by decline processes.

124 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlinear fractional order model was proposed to explain and understand the outbreaks of influenza A(H1N1) in order to explain how the next state depends upon its current state but also upon all of its historical states.
Abstract: In this paper, we propose a nonlinear fractional order model in order to explain and understand the outbreaks of influenza A(H1N1). In the fractional model, the next state depends not only upon its current state but also upon all of its historical states. Thus, the fractional model is more general than the classical epidemic models. In order to deal with the fractional derivatives of the model, we rely on the Caputo operator and on the Grunwald–Letnikov method to numerically approximate the fractional derivatives. We conclude that the nonlinear fractional order epidemic model is well suited to provide numerical results that agree very well with real data of influenza A(H1N1) at the level population. In addition, the proposed model can provide useful information for the understanding, prediction, and control of the transmission of different epidemics worldwide. Copyright © 2013 John Wiley & Sons, Ltd.

124 citations


Authors

Showing all 12089 results

NameH-indexPapersCitations
Jose M. Ordovas123102470978
Liang Cheng116177965520
Pedro W. Crous11580951925
Munther A. Khamashta10962350205
Luis Serrano10545242515
Raymond Vanholder10384140861
Carlos Dieguez10154536404
David G. Bostwick9940331638
Leon V. Kochian9526631301
Abhay Ashtekar9436637508
Néstor Armesto9336926848
Manuel Hidalgo9253841330
Rafael de Cabo9131735020
Harald Mischak9044527472
Manuel Tena-Sempere8735123100
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

92% related

Autonomous University of Barcelona
80.5K papers, 2.3M citations

92% related

University of Valencia
65.6K papers, 1.7M citations

91% related

Ghent University
111K papers, 3.7M citations

90% related

University of Barcelona
108.5K papers, 3.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022133
20211,640
20201,619
20191,517
20181,348