scispace - formally typeset
Search or ask a question
Institution

University of Córdoba (Spain)

EducationCordova, Spain
About: University of Córdoba (Spain) is a education organization based out in Cordova, Spain. It is known for research contribution in the topics: Population & Catalysis. The organization has 12006 authors who have published 22998 publications receiving 537842 citations. The organization is also known as: University of Córdoba (Spain) & Universidad de Córdoba.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of two types of biochar from agricultural wastes typical of Southern Spain: wheat straw and olive tree pruning, combined with different mineral fertilization levels on the growth and yield of wheat (Triticum durum L. cv. Vitron) were evaluated.
Abstract: Climate change and global warming have worldwide adverse consequences. Biochar production and its use in agriculture can play a key role in climate change mitigation and help improve the quality and management of waste materials coming from agriculture and forestry. Biochar is a carbonaceous material obtained from thermal decomposition of residual biomass at relatively low temperature and under oxygen limited conditions (pyrolysis). Biochar is currently a subject of active research worldwide because it can constitute a viable option for sustainable agriculture due to its potential as a long-term sink for carbon in soil and benefits for crops. However, to date, the results of research studies on biochar effects on crop production show great variability, depending on the biochar type and experimental conditions. Therefore, it is important to identify the beneficial aspects of biochar addition to soil on crop yield in order to promote the adoption of this practice in agriculture. In this study, the effects of two types of biochar from agricultural wastes typical of Southern Spain: wheat straw and olive tree pruning, combined with different mineral fertilization levels on the growth and yield of wheat (Triticum durum L. cv. Vitron) were evaluated. Durum wheat was pot-grown for 2 months in a growth chamber on a soil collected from an agricultural field near Cordoba, Southern Spain. Soil properties and plant growth variables were studied in order to assess the agronomic efficiency of biochar. Our results show that biochar addition to a nutrient-poor, slightly acidic loamy sand soil had little effect on wheat yield in the absence of mineral fertilization. However, at the highest mineral fertilizer rate, addition of biochar led to about 20–30 % increase in grain yield compared with the use of the mineral fertilizer alone. Both biochars acted as a source of available P, which led to beneficial effects on crop production. In contrast, the addition of biochar resulted in decreases in available N and Mn. A maximum reduction in plant nutrient concentration of 25 and 80 % compared to nonbiochar-treated soils for N and Mn, respectively, was detected. This fact was related to the own nature of biochar: low available nitrogen content, high adsorption capacity, and low mineralization rate for N; and alkaline pH and high carbonate content for Mn. Our results indicate that biochar-based soil management strategies can enhance wheat production with the environmental benefits of global warming mitigation. This can contribute positively to the viability and benefits of agricultural production systems. However, the nutrient–biochar interactions should receive special attention due to the great variability in the properties of biochar-type materials.

277 citations

Journal ArticleDOI
TL;DR: In this paper, the occupancy levels of 3a and 3b sites by Ni and Li atoms approach as x increases, leading to a statistical distribution for x ≥ 0.4.

277 citations

Journal ArticleDOI
TL;DR: This review has used the available genome databases to explore the structural conservation of three MAPK cascades and the calcium-calcineurin pathway in ten different fungal species, including model organisms, plant pathogens and human pathogens.

275 citations

Journal ArticleDOI
TL;DR: In this paper, the first carbon nanomaterials-based metal-free water splitting electrocatalyst is reported, which is based on a tri-doped porous graphite carbon@oxidized carbon cloth (ONPPGC/OCC) electrode.
Abstract: Earth-abundant, active and stable water splitting electrocatalysts operating in the same electrolyte at all pH values is important for many renewable energy conversion processes. We report here the first carbon nanomaterials-based metal-free water splitting electrocatalyst. The nitrogen, phosphorus and oxygen tri-doped porous graphite carbon@oxidized carbon cloth (ONPPGC/OCC) electrocatalyst can be prepared by a simple cost-effective method using aniline, phytic acid and OCC as precursors. Being a robust integrated three-dimensional porous bifunctional electrode, ONPPGC/OCC enables a high-performance basic water electrolyzer with 10 mA cm−2 at a cell voltage of 1.66 V. Additionally, this electrode offers excellent catalytic performance and durability under both neutral and acidic conditions.

275 citations

Journal ArticleDOI
TL;DR: It is believed that Debaryomyces hansenii, Hortaea werneckii, and Wallemia ichthyophaga have been isolated globally from natural hypersaline environments and are more suitable model organisms to study halotolerance in eukaryotes than S. cerevisiae.

275 citations


Authors

Showing all 12089 results

NameH-indexPapersCitations
Jose M. Ordovas123102470978
Liang Cheng116177965520
Pedro W. Crous11580951925
Munther A. Khamashta10962350205
Luis Serrano10545242515
Raymond Vanholder10384140861
Carlos Dieguez10154536404
David G. Bostwick9940331638
Leon V. Kochian9526631301
Abhay Ashtekar9436637508
Néstor Armesto9336926848
Manuel Hidalgo9253841330
Rafael de Cabo9131735020
Harald Mischak9044527472
Manuel Tena-Sempere8735123100
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

92% related

Autonomous University of Barcelona
80.5K papers, 2.3M citations

92% related

University of Valencia
65.6K papers, 1.7M citations

91% related

Ghent University
111K papers, 3.7M citations

90% related

University of Barcelona
108.5K papers, 3.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022133
20211,640
20201,619
20191,517
20181,348