scispace - formally typeset
Search or ask a question
Institution

University of Crete

EducationRethymno, Greece
About: University of Crete is a education organization based out in Rethymno, Greece. It is known for research contribution in the topics: Population & Galaxy. The organization has 8681 authors who have published 21684 publications receiving 709078 citations. The organization is also known as: Panepistimio Kritis.


Papers
More filters
Journal ArticleDOI
TL;DR: This detailed spatial and temporal profile of the free, soluble-conjugated, and insoluble-conjoined fractions of Put, Spd, and spermine in nearly all tobacco plant organs and the profile of enzymes of PA biosynthesis at the transcript, protein, and specific activity levels, along with the endogenous concentrations of the precursor amino acids Arg and Orn, offer new insight for further understanding the physiological role(s) of PAs.
Abstract: Polyamine (PA) titers and biosynthesis follow a basipetal decrease along the tobacco (Nicotiana tabacum) plant axis, and they also correlate negatively with cell size. On the contrary, the titers of arginine (Arg), ornithine (Orn), and arginase activity increase with age. The free (soluble)/total-PA ratios gradually increase basipetally, but the soluble conjugated decrease, with spermidine (Spd) mainly to determine these changes. The shoot apical meristems are the main site of Spd and spermine biosynthesis, and the hypogeous tissues synthesize mostly putrescine (Put). High and low Spd syntheses are correlated with cell division and expansion, respectively. Put biosynthetic pathways are differently regulated in hyper- and hypogeous tobacco tissues: Only Arg decarboxylase is responsible for Put synthesis in old hypergeous vascular tissues, whereas, in hypogeous tissues, arginase-catalyzed Orn produces Put via Orn decarboxylase. Furthermore, Orn decarboxylase expression coincides with early cell divisions in marginal sectors of the lamina, and Spd synthase strongly correlates with later cell divisions in the vascular regions. This detailed spatial and temporal profile of the free, soluble-conjugated, and insoluble-conjugated fractions of Put, Spd, and spermine in nearly all tobacco plant organs and the profile of enzymes of PA biosynthesis at the transcript, protein, and specific activity levels, along with the endogenous concentrations of the precursor amino acids Arg and Orn, offer new insight for further understanding the physiological role(s) of PAs. The results are discussed in the light of age dependence, cell division/expansion, differentiation, phytohormone gradients, senescence, and sink-source relationships.

152 citations

Journal ArticleDOI
TL;DR: Double‐labelling for two subunits showed that virtually all somatic synapses contain the alpha1, alpha2 and beta3 subunits, and the extrasynaptic plasma membrane of the somata, dendrites and dendritic spines showed low‐density immunolabelling.
Abstract: Hippocampal CA1 pyramidal cells, which receive γ-aminobutyric acid (GABA)ergic input from at least 18 types of presynaptic neuron, express 14 subunits of the pentameric GABAA receptor. The relative contribution of any subunit to synaptic and extrasynaptic receptors influences the dynamics of GABA and drug actions. Synaptic receptors mediate phasic GABA-evoked conductance and extrasynaptic receptors contribute to a tonic conductance. We used freeze-fracture replica-immunogold labelling, a sensitive quantitative immunocytochemical method, to detect synaptic and extrasynaptic pools of the alpha1, alpha2 and beta3 subunits. Antibodies to the cytoplasmic loop of the subunits showed immunogold particles concentrated on distinct clusters of intramembrane particles (IMPs) on the cytoplasmic face of the plasma membrane on the somata, dendrites and axon initial segments, with an abrupt decrease in labelling at the edge of the IMP cluster. Neuroligin-2, a GABAergic synapse-specific adhesion molecule, co-labels all beta3 subunit-rich IMP clusters, therefore we considered them synapses. Double-labelling for two subunits showed that virtually all somatic synapses contain the alpha1, alpha2 and beta3 subunits. The extrasynaptic plasma membrane of the somata, dendrites and dendritic spines showed low-density immunolabelling. Synaptic labelling densities on somata for the alpha1, alpha2 and beta3 subunits were 78–132, 94 and 79 times higher than on the extrasynaptic membranes, respectively. As GABAergic synapses occupy 0.72% of the soma surface, the fraction of synaptic labelling was 33–48 (alpha1), 40 (alpha2) and 36 (beta3)% of the total somatic surface immunolabelling. Assuming similar antibody access to all receptors, about 60% of these subunits are in extrasynaptic receptors.

152 citations

Journal ArticleDOI
TL;DR: In this paper, a new family of functional lanthanide-carboxyphosphonate (H3HPA) materials was reported and two types of structures were isolated: series I and II polymorphs.
Abstract: The chemistry of metal phosphonates has been progressing fast with the addition of new materials that possess novel structural features and new properties, occasionally in a cooperative manner. In this paper, we report a new family of functional lanthanide-carboxyphosphonate materials. Specifically, the lanthanide is La, Ce, Pr, Sm, Eu, Gd, Tb, or Dy and the carboxyphosphonate ligand is 2-hydroxyphosphonoacetic acid (H3HPA). All reported LnHPA compounds, Ln3(H0.75O3PCHOHCOO)4·xH2O (x = 15–16), crystallize in the orthorhombic system. Two types of structures were isolated: series I and II polymorphs. For both series, the three-dimensional (3D) open frameworks result from the linkage of similar organo-inorganic layers, in the ac-plane, by central lanthanide cations, which yield trimeric units also found in other metal-HPA hybrids. Large oval-shaped 1D channels are formed by the spatial separation of the layers along the b-axis and filled with lattice water molecules. LnHPA materials undergo remarkable crysta...

152 citations

Journal ArticleDOI
TL;DR: The findings should encourage policymakers, governments, and local and national stakeholders to take action to facilitate an increase in the physical activity levels of young people across Europe.
Abstract: BACKGROUND: Levels of physical activity and variation in physical activity and sedentary time by place and person in European children and adolescents are largely unknown. The objective of the study was to assess the variations in objectively measured physical activity and sedentary time in children and adolescents across Europe. METHODS: Six databases were systematically searched to identify pan-European and national data sets on physical activity and sedentary time assessed by the same accelerometer in children (2 to 9.9 years) and adolescents (≥10 to 18 years). We harmonized individual-level data by reprocessing hip-worn raw accelerometer data files from 30 different studies conducted between 1997 and 2014, representing 47,497 individuals (2-18 years) from 18 different European countries. RESULTS: Overall, a maximum of 29% (95% CI: 25, 33) of children and 29% (95% CI: 25, 32) of adolescents were categorized as sufficiently physically active. We observed substantial country- and region-specific differences in physical activity and sedentary time, with lower physical activity levels and prevalence estimates in Southern European countries. Boys were more active and less sedentary in all age-categories. The onset of age-related lowering or leveling-off of physical activity and increase in sedentary time seems to become apparent at around 6 to 7 years of age. CONCLUSIONS: Two third of European children and adolescents are not sufficiently active. Our findings suggest substantial gender-, country- and region-specific differences in physical activity. These results should encourage policymakers, governments, and local and national stakeholders to take action to facilitate an increase in the physical activity levels of young people across Europe.

152 citations

Journal ArticleDOI
TL;DR: It is concluded from the results that UV-B radiation affects photosystem II redox components at both the donor and acceptor side.
Abstract: Inhibition of photosystem II electron transport by UV-B radiation has been studied in isolated spinach photosystem II membrane particles using low-temperature EPR spectroscopy and chlorophyll fluorescence measurements. UV-B irradiation results in the rapid inhibition of oxygen evolution and the decline of variable chlorophyll fluorescence. These effects are accompanied by the loss of the multiline EPR signal arising from the S2 state of the water-oxidizing complex and the induction of Signal IIfast originating from stabilized Try-Z+. The EPR signals from the QA-Fe2+ acceptor complex, Tyr-D+, and the oxidized non-heme iron (Fe3+) are also decreased during the course of UV-B irradiation, but at a significantly slower rate than oxygen evolution and the multiline signal. The decrease of the Fe3+ signal at high g values (g = 8.06, g = 5.6) is accompanied by the induction of another EPR signal at g = 4.26 that arises most likely from the same Fe3+ ion in a modified ligand environment. UV-B irradiation also affects cytochrome b-559. The g = 2.94 EPR signal that arises from the dark- oxidized form is enhanced, whereas the light inducible g = 3.04 signal that arises from the photo-oxidizable population of cytochrome b-559 is diminished. UV-B irradiation also induces the degradation of the D1 reaction center protein. The rate of the D1 protein loss is slower than the inhibition of oxygen evolution and of the multiline signal but follows closely the loss of Signal IIslow, the QA-Fe2+ and the Fe3+ EPR signals, as well as the release of protein-bound manganese. It is concluded from the results that UV-B radiation affects photosystem II redox components at both the donor and acceptor side. The primary damage occurs at the water-oxidizing complex. Modification and/or inactivation of tyrosine-D, cytochrome b-559, and the QAFe2+ acceptor complex are subsequent events that coincide more closely with the UV-B-induced damage to the protein structure of the photosystem II reaction center.

152 citations


Authors

Showing all 8725 results

NameH-indexPapersCitations
Mercouri G. Kanatzidis1521854113022
T. J. Pearson150895126533
Stylianos E. Antonarakis13874693605
William Wijns12775295517
Andrea Comastri11170649119
Costas M. Soukoulis10864450208
Elias Anaissie10737242808
Jian Zhang107306469715
Emmanouil T. Dermitzakis10129482496
Andreas Engel9944833494
Nikos C. Kyrpides9671162360
David J. Kerr9554439408
Manolis Kogevinas9562328521
Thomas Walz9225529981
Jean-Paul Latgé9134329152
Network Information
Related Institutions (5)
University of Amsterdam
140.8K papers, 5.9M citations

94% related

University of Helsinki
113.1K papers, 4.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Paris
174.1K papers, 5M citations

93% related

Rutgers University
159.4K papers, 6.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202328
2022103
20211,380
20201,288
20191,180
20181,131