scispace - formally typeset
Search or ask a question
Institution

University of Crete

EducationRethymno, Greece
About: University of Crete is a education organization based out in Rethymno, Greece. It is known for research contribution in the topics: Population & Galaxy. The organization has 8681 authors who have published 21684 publications receiving 709078 citations. The organization is also known as: Panepistimio Kritis.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of pesticides as environmental risk factors in genesis of idiopathic PD and other neurological syndromes is clarified and the most relevant epidemiological and experimental data is highlighted in order to discuss the molecular mechanisms involved in neurodegeneration.

311 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the transmission and reflection data obtained through transfer matrix calculations on metamaterials of finite lengths, to determine their effective permittivity and permeability.
Abstract: We analyze the transmission and reflection data obtained through transfer matrix calculations on metamaterials of finite lengths, to determine their effective permittivity $ϵ$ and permeability $\ensuremath{\mu}$. Our study concerns metamaterial structures composed of periodic arrangements of wires, cut wires, split ring resonators (SRRs), closed SRRs, and both wires and SRRs. We find that the SRRs have a strong electric response, equivalent to that of cut wires, which dominates the behavior of left-handed materials (LHM). Analytical expressions for the effective parameters of the different structures are given, which can be used to explain the transmission characteristics of LHMs. Of particular relevance is the criterion introduced by our studies to identify if an experimental transmission peak is left or right handed.

310 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the morphology, photometry and kinematics of the bars which have formed in three N-body simulations, and show that the disc dominates over the halo in the inner parts, even for model MH, for which the contribution were initially comparable in that region.
Abstract: We discuss the morphology, photometry and kinematics of the bars which have formed in three N-body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to X-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, both for the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large m = 2, 4, 6 and 8 components. Contrary to this for model MD the components m = 6 and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bar of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region.

309 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the surface properties of ZnO transparent thin films are strongly influenced by surface morphology, and correlating the optical and electrical film properties with surface parameters (i.e. RMS and grain radius) can lead to an enhancement of the material's potential for gas sensing applications.

307 citations

Journal ArticleDOI
TL;DR: This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets, including recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Abstract: . Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3 , NH3 , HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.

305 citations


Authors

Showing all 8725 results

NameH-indexPapersCitations
Mercouri G. Kanatzidis1521854113022
T. J. Pearson150895126533
Stylianos E. Antonarakis13874693605
William Wijns12775295517
Andrea Comastri11170649119
Costas M. Soukoulis10864450208
Elias Anaissie10737242808
Jian Zhang107306469715
Emmanouil T. Dermitzakis10129482496
Andreas Engel9944833494
Nikos C. Kyrpides9671162360
David J. Kerr9554439408
Manolis Kogevinas9562328521
Thomas Walz9225529981
Jean-Paul Latgé9134329152
Network Information
Related Institutions (5)
University of Amsterdam
140.8K papers, 5.9M citations

94% related

University of Helsinki
113.1K papers, 4.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Paris
174.1K papers, 5M citations

93% related

Rutgers University
159.4K papers, 6.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202328
2022103
20211,380
20201,288
20191,180
20181,131