scispace - formally typeset
Search or ask a question
Institution

University of Cyprus

EducationNicosia, Cyprus
About: University of Cyprus is a education organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Large Hadron Collider & Context (language use). The organization has 3624 authors who have published 15157 publications receiving 412135 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present two-and three-dimensional direct numerical simulations of the flow around a circular cylinder placed symmetrically in a plane channel, and investigate the confinement effect due to the channel's stationary walls on the force coefficients and the associated Strouhal numbers, as well as on generated flow regimes.
Abstract: This paper presents two- and three-dimensional direct numerical simulations of the flow around a circular cylinder placed symmetrically in a plane channel. Results are presented in the Reynolds number range (based on the cylinder diameter and centerline velocity) of 10 to 390 for a blockage ratio (ratio of the cylinder diameter to the channel height) of 0.2. The aim of this work was to investigate in detail the confinement effect due to the channel’s stationary walls on the force coefficients and the associated Strouhal numbers, as well as on the generated flow regimes. Present results suggest a transition from a 2-D to a 3-D shedding flow regime between Re = 180 and Re = 210. This transition was found to be dominated by mode A and mode B three dimensional instabilities, similar to those observed in the case of an unconfined circular cylinder. This is the first time that the existence of the two modes, and of naturally occurring vortex dislocations, has been confirmed via full 3-D simulations for the case...

95 citations

Journal ArticleDOI
TL;DR: Combinatorial treatment of tranilast with Doxil optimizes TME normalization, improves immunostimulation and enhances the efficacy of immunotherapy.
Abstract: Tumor normalization strategies aim to improve tumor blood vessel functionality (i.e., perfusion) by reducing the hyper-permeability of tumor vessels or restoring compressed vessels. Despite progress in strategies to normalize the tumor microenvironment (TME), their combinatorial antitumor effects with nanomedicine and immunotherapy remain unexplored. Methods: Here, we re-purposed the TGF-β inhibitor tranilast, an approved anti-fibrotic and antihistamine drug, and combined it with Doxil nanomedicine to normalize the TME, increase perfusion and oxygenation, and enhance anti-tumor immunity. Specifically, we employed two triple-negative breast cancer (TNBC) mouse models to primarily evaluate the therapeutic and normalization effects of tranilast combined with doxorubicin and Doxil. We demonstrated the optimized normalization effects of tranilast combined with Doxil and extended our analysis to investigate the effect of TME normalization to the efficacy of immune checkpoint inhibitors. Results: Combination of tranilast with Doxil caused a pronounced reduction in extracellular matrix components and an increase in the intratumoral vessel diameter and pericyte coverage, indicators of TME normalization. These modifications resulted in a significant increase in tumor perfusion and oxygenation and enhanced treatment efficacy as indicated by the notable reduction in tumor size. Tranilast further normalized the immune TME by restoring the infiltration of T cells and increasing the fraction of T cells that migrate away from immunosuppressive cancer-associated fibroblasts. Furthermore, we found that combining tranilast with Doxil nanomedicine, significantly improved immunostimulatory M1 macrophage content in the tumorigenic tissue and improved the efficacy of the immune checkpoint blocking antibodies anti-PD-1/anti-CTLA-4. Conclusion: Combinatorial treatment of tranilast with Doxil optimizes TME normalization, improves immunostimulation and enhances the efficacy of immunotherapy.

95 citations

Journal ArticleDOI
01 Jan 2013
TL;DR: The Hierarchical Tree Alternative Path (HTAP) algorithm is presented, a ''resource control'' algorithm that attempts to mitigate congestion in wireless sensor networks by creating dynamic alternative paths to the sink.
Abstract: Recent advances in wireless sensor networks (WSNs) have lead to applications with increased traffic demands. Research is evolving from applications where performance is not considered as a crucial factor, to applications where performance is a critical factor. There are many cases in the fields of automation, health monitoring, and disaster response that demand wireless sensor networks where performance assurances are vital, especially for parameters like power, delay, and reliability. Due to the nature of these networks the higher amount of traffic is observed when the monitored event takes place. Exactly at this instance, there is a higher probability of congestion appearance in the network. Congestion in WSNs is tackled by the employment of two methods: either by reducing the load (''traffic control''), or by increasing the resources (''resource control''). In this paper we present the Hierarchical Tree Alternative Path (HTAP) algorithm, a ''resource control'' algorithm that attempts, through simple steps and minor computations, to mitigate congestion in wireless sensor networks by creating dynamic alternative paths to the sink. HTAP is evaluated in several scenarios in comparison with another ''resource control'' algorithm (TARA), as well as with a ''traffic control'' algorithm (SenTCP), and also the case where no congestion control exists in the network (''no CC''). Results show that HTAP is a simple and efficient algorithm capable of dealing successfully with congestion in WSNs, while preserving the performance characteristics of the network.

95 citations

Journal ArticleDOI
TL;DR: Study of the effects of sodium salts of simple monovalent anions belonging to the Hofmeister series on the bilayers of the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine revealed that the effect of ions on the lipid equation-of-state is roughly linear at low concentrations, but strongly nonlinear at high concentrations.

95 citations

Book ChapterDOI
11 Nov 2005
TL;DR: This work focuses on porting to the GPU the most time-consuming loop, which accounts for nearly 50% of the total execution time, and shows preliminary results show that the loop code achieves a speedup of 3x while the whole application with a single loop optimization, achieves aspeedup of 1.2x.
Abstract: Bioinformatics applications are one of the most relevant and compute-demanding applications today. While normally these applications are executed on clusters or dedicated parallel systems, in this work we explore the use of an alternative architecture. We focus on exploiting the compute-intensive characteristics offered by the graphics processors (GPU) in order to accelerate a bioinformatics application. The GPU is a good match for these applications as it is an inexpensive, high-performance SIMD architecture. In our initial experiments we evaluate the use of a regular graphics card to improve the performance of RAxML, a bioinformatics program for phylogenetic tree inference. In this paper we focus on porting to the GPU the most time-consuming loop, which accounts for nearly 50% of the total execution time. The preliminary results show that the loop code achieves a speedup of 3x while the whole application with a single loop optimization, achieves a speedup of 1.2x.

95 citations


Authors

Showing all 3715 results

NameH-indexPapersCitations
Luca Lista1402044110645
Peter Wittich1391646102731
Stefano Giagu1391651101569
Norbert Perrimon13861073505
Pierluigi Paolucci1381965105050
Kreso Kadija135127095988
Daniel Thomas13484684224
Julia Thom132144192288
Alberto Aloisio131135687979
Panos A Razis130128790704
Jehad Mousa130122686564
Alexandros Attikis128113677259
Fotios Ptochos128103681425
Charalambos Nicolaou128115283886
Halil Saka128113777106
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Tel Aviv University
115.9K papers, 3.9M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022126
20211,224
20201,200
20191,044
20181,009