scispace - formally typeset
Search or ask a question
Institution

University of Duisburg-Essen

EducationEssen, Nordrhein-Westfalen, Germany
About: University of Duisburg-Essen is a education organization based out in Essen, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 16072 authors who have published 39972 publications receiving 1109199 citations.


Papers
More filters
Journal ArticleDOI
David Capper1, David Capper2, David Capper3, David T.W. Jones1  +168 moreInstitutions (54)
22 Mar 2018-Nature
TL;DR: This work presents a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and shows that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods.
Abstract: Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

1,620 citations

Journal ArticleDOI
Peter J. Campbell1, Gad Getz2, Jan O. Korbel3, Joshua M. Stuart4  +1329 moreInstitutions (238)
06 Feb 2020-Nature
TL;DR: The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.
Abstract: Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1,2,3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10,11,12,13,14,15,16,17,18.

1,600 citations

Journal ArticleDOI
12 Jun 2014-PLOS ONE
TL;DR: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimers disease.
Abstract: Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This s ...

1,518 citations

Journal ArticleDOI
TL;DR: A combination of dabraenib and trametinib, as compared with dabrafenib alone, improved the rate of progression-free survival in previously untreated patients who had metastatic melanoma with BRAF V600E or V600K mutations.
Abstract: BACKGROUND Combined BRAF and MEK inhibition, as compared with BRAF inhibition alone, delays the emergence of resistance and reduces toxic effects in patients who have melanoma with BRAF V600E or V600K mutations. METHODS In this phase 3 trial, we randomly assigned 423 previously untreated patients who had unresectable stage IIIC or stage IV melanoma with a BRAF V600E or V600K mutation to receive a combination of dabrafenib (150 mg orally twice daily) and trametinib (2 mg orally once daily) or dabrafenib and placebo. The primary end point was progression-free survival. Secondary end points included overall survival, response rate, response duration, and safety. A preplanned interim overall survival analysis was conducted. RESULTS The median progression-free survival was 9.3 months in the dabrafenib–trametinib group and 8.8 months in the dabrafenib-only group (hazard ratio for progression or death in the dabrafenib–trametinib group, 0.75; 95% confidence interval [CI], 0.57 to 0.99; P = 0.03). The overall response rate was 67% in the dabrafenib–trametinib group and 51% in the dabrafenib-only group (P = 0.002). At 6 months, the interim overall survival rate was 93% with dabrafenib–trametinib and 85% with dabrafenib alone (hazard ratio for death, 0.63; 95% CI, 0.42 to 0.94; P = 0.02). However, a specified efficacy-stopping boundary (two-sided P = 0.00028) was not crossed. Rates of adverse events were similar in the two groups, although more dose modifications occurred in the dabrafenib–trametinib group. The rate of cutaneous squamous-cell carcinoma was lower in the dabrafenib–trametinib group than in the dabrafenib-only group (2% vs. 9%), whereas pyrexia occurred in more patients (51% vs. 28%) and was more often severe (grade 3, 6% vs. 2%) in the dabrafenib–trametinib group. CONCLUSIONS A combination of dabrafenib and trametinib, as compared with dabrafenib alone, improved the rate of progression-free survival in previously untreated patients who had metastatic melanoma with BRAF V600E or V600K mutations. (Funded by GlaxoSmithKline; Clinical Trials.gov number, NCT01584648.)

1,501 citations

Journal ArticleDOI
TL;DR: The Clatterbridge Cancer Centre and Liverpool Heart and Chest Hospital, Liverpool; University of Aberdeen, Aberdeen, UK; Center for Medical Imaging, University of Groningen, Groningen; Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands; and Department of Thoracic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK.

1,498 citations


Authors

Showing all 16364 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Olli T. Raitakari1421232103487
Anders Hamsten13961188144
Robert Huber13967173557
Christopher T. Walsh13981974314
Patrick D. McGorry137109772092
Stanley Nattel13277865700
Luis M. Liz-Marzán13261661684
Dirk Schadendorf1271017105777
William Wijns12775295517
Raimund Erbel125136474179
Khalil Amine11865250111
Hans-Christoph Diener118102591710
Bruce A.J. Ponder11640354796
Andre Franke11568255481
Network Information
Related Institutions (5)
Technische Universität München
123.4K papers, 4M citations

95% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

VU University Amsterdam
75.6K papers, 3.4M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022496
20213,694
20203,449
20193,155
20182,761