scispace - formally typeset
Search or ask a question
Institution

University of Duisburg-Essen

EducationEssen, Nordrhein-Westfalen, Germany
About: University of Duisburg-Essen is a education organization based out in Essen, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 16072 authors who have published 39972 publications receiving 1109199 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the promoting effect of Al, Ga, and Mg on the support in Cu/ZnO catalysts for methanol synthesis and found correlations between the conductivity of the ZnO support and the activity of the catalyst in the reverse water-gas shift reaction (rWGS) as well as in methanoline synthesis.
Abstract: The promoting effect of Al, Ga, and Mg on the support in Cu/ZnO catalysts for methanol synthesis has been investigated. Different unpromoted and promoted ZnO supports were synthesized and impregnated with Cu metal in a subsequent step. All materials, supports, and calcined and activated catalysts were characterized by various methods, including contactless (microwave) conductivity measurements under different gas atmospheres. Small amounts of promoters were found to exhibit a significant influence on the properties of the oxide support, concerning textural as well as electronic properties. We found correlations between the conductivity of the ZnO support and the activity of the catalyst in the reverse water-gas shift reaction (rWGS) as well as in methanol synthesis. In rWGS the activation energy and reaction order in H2 are decreased upon promotion of the ZnO support with the trivalent promoters Al3+ and Ga3+, indicating an electronic promotion. In methanol synthesis, results point to a structural promoti...

188 citations

Journal ArticleDOI
TL;DR: In this article, the dominant 6-photon ionization mechanism in fused silica and sapphire at intensities around $10\text{ } \text{ √ TW/{\mathrm{TW}/{cm}}^{2} was investigated by ultrafast time-resolved imaging interferometry.
Abstract: Ionization mechanisms in bulk dielectrics irradiated by single intense 50-fs-laser pulses are investigated by ultrafast time-resolved imaging interferometry. Polarization-sensitive 6-photon ionization is shown to be the dominant ionization mechanism in fused silica and sapphire at intensities around $10\text{ }\text{ }\mathrm{TW}/{\mathrm{cm}}^{2}$. For both materials the cross sections of 6-photon ionization are found to be significantly higher for linear polarization than for circular. Our experimental results corroborate an earlier theoretical prediction on the dominance of linear polarization in high-order multiphoton ionization.

188 citations

Journal ArticleDOI
TL;DR: A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms of ion-surface interaction.
Abstract: This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion–surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

187 citations

Journal ArticleDOI
TL;DR: This review will focus on the combination of polymeric hydrogels and porous membranes which leads to composites with promising functionality for, e.g., mass separations, sensing and analytics, (bio)catalysis, biomedical engineering and micro-system technologies.
Abstract: Polymeric hydrogels are a most interesting class of “soft matter” with several established and many more possible applications as functional materials. In this review we will focus on the combination of polymeric hydrogels and porous membranes which leads to composites with promising functionality for, e.g., mass separations, sensing and analytics, (bio)catalysis, biomedical engineering and micro-system technologies. The combination of a rigid porous membrane with a soft functional hydrogel by a suited preparation technique enables that the functionality of the hydrogel can be applied in a unique way. The most important preparation strategies for hydrogel composite membranes, i.e., pore-filling, various surface-grafting methods and combinations thereof, will be discussed. The structural diversity of the hydrogels is based on the use of a wide range of synthetic monomers, but biopolymers or their derivatives can also be applied. The interplay of the membrane pore structure, the structure of the hydrogel and the distribution of the hydrogel in the pore space can lead to different types of composite membranes with completely different potential applications. The focus will be on promising examples for the various types of functional composite membranes, i.e., macroporous membrane adsorbers, anti-fouling filtration membranes, hydrogel-based ultrafiltration membranes, other separation membranes with pore-filling hydrogel as selective material, stimuli-responsive membranes and porous membrane valves and gates, as well as biocompatible or bioactive membranes.

187 citations


Authors

Showing all 16364 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Olli T. Raitakari1421232103487
Anders Hamsten13961188144
Robert Huber13967173557
Christopher T. Walsh13981974314
Patrick D. McGorry137109772092
Stanley Nattel13277865700
Luis M. Liz-Marzán13261661684
Dirk Schadendorf1271017105777
William Wijns12775295517
Raimund Erbel125136474179
Khalil Amine11865250111
Hans-Christoph Diener118102591710
Bruce A.J. Ponder11640354796
Andre Franke11568255481
Network Information
Related Institutions (5)
Technische Universität München
123.4K papers, 4M citations

95% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

VU University Amsterdam
75.6K papers, 3.4M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022496
20213,694
20203,449
20193,155
20182,761