scispace - formally typeset
Search or ask a question
Institution

University of Duisburg-Essen

EducationEssen, Nordrhein-Westfalen, Germany
About: University of Duisburg-Essen is a education organization based out in Essen, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 16072 authors who have published 39972 publications receiving 1109199 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, early-stage disease and locally advanced disease.

375 citations

Journal ArticleDOI
TL;DR: Biochemical, functional, and modeling studies point to a combination of increased sarcoplasmic reticulum Ca2+ load related to phospholamban hyperphosphorylation and ryanodine receptor dysregulation and enhanced SERCA2a activity as underlying mechanisms for cellular arrhythmogenesis in pAF patients.
Abstract: Background—Electrical, structural, and Ca2+-handling remodeling contribute to the perpetuation/progression of atrial fibrillation (AF). Recent evidence has suggested a role for spontaneous sarcoplasmic reticulum Ca2+-release events in long-standing persistent AF, but the occurrence and mechanisms of sarcoplasmic reticulum Ca2+-release events in paroxysmal AF (pAF) are unknown. Method and Results—Right-atrial appendages from control sinus rhythm patients or patients with pAF (last episode a median of 10–20 days preoperatively) were analyzed with simultaneous measurements of [Ca2+]i (fluo-3-acetoxymethyl ester) and membrane currents/action potentials (patch-clamp) in isolated atrial cardiomyocytes, and Western blot. Action potential duration, L-type Ca2+ current, and Na+/Ca2+-exchange current were unaltered in pAF, indicating the absence of AF-induced electrical remodeling. In contrast, there were increases in SR Ca2+ leak and incidence of delayed after-depolarizations in pAF. Ca2+-transient amplitude and s...

373 citations

Journal ArticleDOI
15 Mar 2016-ACS Nano
TL;DR: The high potential of nanosized EVs for both diagnostic and therapeutic areas of nanomedicine, as demonstrated by the European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), is demonstrated.
Abstract: Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.

371 citations

Journal ArticleDOI
Kyle J. Gaulton1, Kyle J. Gaulton2, Teresa Ferreira1, Yeji Lee3  +258 moreInstitutions (73)
TL;DR: This paper performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry, and identified 49 distinct association signals at these loci including five mapping in or near KCNQ1.
Abstract: We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.

370 citations

Journal ArticleDOI
TL;DR: An extensive review of recently published papers on hybrid flow shop (HFS) scheduling problems is presented and the papers are classified first according to the HFS characteristics and production limitations considered in the respective papers and then according toThe solution approach proposed.

370 citations


Authors

Showing all 16364 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Olli T. Raitakari1421232103487
Anders Hamsten13961188144
Robert Huber13967173557
Christopher T. Walsh13981974314
Patrick D. McGorry137109772092
Stanley Nattel13277865700
Luis M. Liz-Marzán13261661684
Dirk Schadendorf1271017105777
William Wijns12775295517
Raimund Erbel125136474179
Khalil Amine11865250111
Hans-Christoph Diener118102591710
Bruce A.J. Ponder11640354796
Andre Franke11568255481
Network Information
Related Institutions (5)
Technische Universität München
123.4K papers, 4M citations

95% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

VU University Amsterdam
75.6K papers, 3.4M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022496
20213,694
20203,449
20193,155
20182,761