scispace - formally typeset
Search or ask a question
Institution

University of Dundee

EducationDundee, United Kingdom
About: University of Dundee is a education organization based out in Dundee, United Kingdom. It is known for research contribution in the topics: Population & Protein kinase A. The organization has 19258 authors who have published 39640 publications receiving 1919433 citations. The organization is also known as: Universitas Dundensis & Dundee University.


Papers
More filters
Journal ArticleDOI
TL;DR: The understanding of the regulation of p53 isoform expression and their biological activities in relation to the cellular context would constitute an important step toward the improvement of the diagnostic, prognostic, and predictive values of p 53 in cancer treatment.
Abstract: Thirty-five years of research on p53 gave rise to more than 68,000 articles and reviews, but did not allow the uncovering of all the mysteries that this major tumor suppressor holds. How p53 handles the different signals to decide the appropriate cell fate in response to a stress and its implication in tumorigenesis and cancer progression remains unclear. Nevertheless, the uncovering of p53 isoforms has opened new perspectives in the cancer research field. Indeed, the human TP53 gene encodes not only one but at least twelve p53 protein isoforms, which are produced in normal tissues through alternative initiation of translation, usage of alternative promoters, and alternative splicing. In recent years, it became obvious that the different p53 isoforms play an important role in regulating cell fate in response to different stresses in normal cells by differentially regulating gene expression. In cancer cells, abnormal expression of p53 isoforms contributes actively to cancer formation and progression, regardless of TP53 mutation status. They can also be associated with response to treatment, depending on the cell context. The determination of p53 isoform expression and p53 mutation status helps to define different subtypes within a particular cancer type, which would have different responses to treatment. Thus, the understanding of the regulation of p53 isoform expression and their biological activities in relation to the cellular context would constitute an important step toward the improvement of the diagnostic, prognostic, and predictive values of p53 in cancer treatment. This review aims to summarize the involvement of p53 isoforms in cancer and to highlight novel potential therapeutic targets.

344 citations

Journal ArticleDOI
TL;DR: This review surveys what is known about the structure and function of the subnuclear domains called Cajal bodies, and considers the interesting links that have emerged between CBs and alterations in nuclear structure apparent in a range of human pathologies.
Abstract: This review surveys what is known about the structure and function of the subnuclear domains called Cajal bodies (CBs). The major focus is on CBs in mammalian cells but we provide an overview of homologous CB structures in other organisms. We discuss the protein and RNA components of CBs, including factors recently found to associate in a cell cycle-dependent fashion or under specific metabolic or stress conditions. We also consider the dynamic properties of both CBs and their molecular components, based largely on recent data obtained thanks to the advent of improved in vivo detection and imaging methods. We discuss how these data contribute to an understanding of CB functions and highlight major questions that remain to be answered. Finally, we consider the interesting links that have emerged between CBs and alterations in nuclear structure apparent in a range of human pathologies, including cancer and inherited neurodegenerative diseases. We speculate on the relationship between CB function and molecular disease.

344 citations

Journal ArticleDOI
TL;DR: This report proposes three priority research areas and outlines how national investment in midwives and in their work environment, education, regulation, and management can improve quality of care.

343 citations

Journal ArticleDOI
TL;DR: A steady-state cycling of Ca(2%) through independent influx and efflux pathways provides a model which is kinetically and thermodynamically consistent with the present observations, and which predicts an extremely precise regulation of pCa(2+) (0) by liver mitochondria in vivo.
Abstract: The mechanism whereby rat liver mitochondria regulate the extramitochondrial concentration of free Ca2+ was investigated. At 30°C and pH7.0, mitochondria can maintain a steady-state pCa2+0 (the negative logarithm of the free extramitochondrial Ca2+ concentration) of 6.1 (0.8μm). This represents a true steady state, as slight displacements in pCa2+0 away from 6.1 result in net Ca2+ uptake or efflux in order to restore pCa2+0 to its original value. In the absence of added permeant weak acid, the steady-state pCa2+0 is virtually independent of the Ca2+ accumulated in the matrix until 60nmol of Ca2+/mg of protein has been taken up. The steady-state pCa2+0 is also independent of the membrane potential, as long as the latter parameter is above a critical value. When the membrane potential is below this value, pCa2+0 is variable and appears to be governed by thermodynamic equilibration of Ca2+ across a Ca2+ uniport. Permeant weak acids increase, and N-ethylmaleimide decreases, the capacity of mitochondria to buffer pCa2+0 in the region of 6 (1μm-free Ca2+) while accumulating Ca2+. Permeant acids delay the build-up of the transmembrane pH gradient as Ca2+ is accumulated, and consequently delay the fall in membrane potential to values insufficient to maintain a pCa2+0 of 6. The steady-state pCa2+0 is affected by temperature, incubation pH and Mg2+. The activity of the Ca2+ uniport, rather than that of the respiratory chain, is rate-limiting when pCa2+0 is greater than 5.3 (free Ca2+ less than 5μm). When the Ca2+ electrochemical gradient is in excess, the activity of the uniport decreases by 2-fold for every 0.12 increase in pCa2+0 (fall in free Ca2+). At pCa2+0 6.1, the activity of the Ca2+ uniport is kinetically limited to 5nmol of Ca2+/min per mg of protein, even when the Ca2+ electrochemical gradient is large. A steady-state cycling of Ca2+ through independent influx and efflux pathways provides a model which is kinetically and thermodynamically consistent with the present observations, and which predicts an extremely precise regulation of pCa2+0 by liver mitochondria in vivo.

343 citations

Journal ArticleDOI
TL;DR: Prebiotics such as galactooligosaccharide derivatives have been shown to modify the species composition of the colonic microbiota, and in various degrees, to manifest several health-promoting properties related to enhanced mineral absorption, laxation, potential anticancer properties, lipid metabolism, and anti-inflammatory and other immune effects, including atopic disease.
Abstract: The human large intestine harbors a complex microbiota containing many hundreds of different bacterial species. Although structure/function relationships between different components of the microbiota are unclear, this complex multicellular entity plays an important role in maintaining homeostasis in the body. Many of the physiologic properties of the microbiota can be attributed to fermentation and the production of short-chain fatty acids (SCFAs), particularly acetate, propionate, and butyrate. In healthy people, fermentation processes are largely controlled by the amounts and different types of substrate, particularly complex carbohydrates that are accessible to bacteria in the colonic ecosystem. However, other factors impact on bacterial metabolism in the large gut, including large bowel transit time, the availability of inorganic terminal electron acceptors, such as nitrate and sulfate, and gut pH. They all affect the types and levels of SCFA that can be formed by the microbiota. This is important because to a large extent, acetate, propionate, and butyrate have varying physiologic effects in different body tissues. Prebiotics such as galactooligosaccharides together with inulins and their fructooligosaccharide derivatives have been shown to modify the species composition of the colonic microbiota, and in various degrees, to manifest several health-promoting properties related to enhanced mineral absorption, laxation, potential anticancer properties, lipid metabolism, and anti-inflammatory and other immune effects, including atopic disease. Many of these phenomena can be linked to their digestion and SCFA production by bacteria in the large gut.

342 citations


Authors

Showing all 19404 results

NameH-indexPapersCitations
Matthias Mann221887230213
Mark I. McCarthy2001028187898
Stefan Schreiber1781233138528
Kenneth C. Anderson1781138126072
Masayuki Yamamoto1711576123028
Salvador Moncada164495138030
Jorge E. Cortes1632784124154
Andrew P. McMahon16241590650
Philip Cohen154555110856
Dirk Inzé14964774468
Andrew T. Hattersley146768106949
Antonio Lanzavecchia145408100065
Kim Nasmyth14229459231
David Price138168793535
Dario R. Alessi13635474753
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

University of Manchester
168K papers, 6.4M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202361
2022205
20211,653
20201,520
20191,473
20181,524