scispace - formally typeset
Search or ask a question
Institution

University of Dundee

EducationDundee, United Kingdom
About: University of Dundee is a education organization based out in Dundee, United Kingdom. It is known for research contribution in the topics: Population & Protein kinase A. The organization has 19258 authors who have published 39640 publications receiving 1919433 citations. The organization is also known as: Universitas Dundensis & Dundee University.


Papers
More filters
Journal ArticleDOI
Cecilia M. Lindgren1, Iris M. Heid2, Joshua C. Randall1, Claudia Lamina3  +152 moreInstitutions (36)
TL;DR: By focusing on anthropometric measures of central obesity and fat distribution, a meta-analysis of 16 genome-wide association studies informative for adult waist circumference and waist–hip ratio identified three loci implicated in the regulation of human adiposity.
Abstract: To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.

648 citations

Journal ArticleDOI
TL;DR: The results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.
Abstract: Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its impact on target degradation selectivity remain elusive. We solved the crystal structure of Brd4 degrader MZ1 in complex with human VHL and the Brd4 bromodomain (Brd4BD2). The ligand folds into itself to allow formation of specific intermolecular interactions in the ternary complex. Isothermal titration calorimetry studies, supported by surface mutagenesis and proximity assays, are consistent with pronounced cooperative formation of ternary complexes with Brd4BD2. Structure-based-designed compound AT1 exhibits highly selective depletion of Brd4 in cells. Our results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.

646 citations

Journal ArticleDOI
Richa Saxena1, Richa Saxena2, Claudia Langenberg, Toshiko Tanaka3  +170 moreInstitutions (52)
TL;DR: A meta-analysis of nine genome-wide association studies and a follow-up of 29 independent loci found three newly implicated loci to be associated with type 2 diabetes: GIPR, ADCY5 and VPS13C.
Abstract: Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2- h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).

645 citations

Book ChapterDOI
TL;DR: The physiology and chemistry of citric and oxalic acid production in fungi are discussed, the intimate association of these acids and processes with metal speciation, physiology and mobility, and their importance and involvement in key fungal-mediated processes, including lignocellulose degradation, plant pathogenesis and metal biogeochemistry.
Abstract: The production of organic acids by fungi has profound implications for metal speciation, physiology and biogeochemical cycles. Biosynthesis of oxalic acid from glucose occurs by hydrolysis of oxaloacetate to oxalate and acetate catalysed by cytosolic oxaloacetase, whereas on citric acid, oxalate production occurs by means of glyoxylate oxidation. Citric acid is an intermediate in the tricarboxylic acid cycle, with metals greatly influencing biosynthesis: growth limiting concentrations of Mn, Fe and Zn are important for high yields. The metal-complexing properties of these organic acids assist both essential metal and anionic (e.g. phosphate) nutrition of fungi, other microbes and plants, and determine metal speciation and mobility in the environment, including transfer between terrestrial and aquatic habitats, biocorrosion and weathering. Metal solubilization processes are also of potential for metal recovery and reclamation from contaminated solid wastes, soils and low-grade ores. Such ‘heterotrophic leaching’ can occur by several mechanisms but organic acids occupy a central position in the overall process, supplying both protons and a metal-complexing organic acid anion. Most simple metal oxalates [except those of alkali metals, Fe(III) and Al] are sparingly soluble and precipitate as crystalline or amorphous solids. Calcium oxalate is the most important manifestation of this in the environment and, in a variety of crystalline structures, is ubiquitously associated with free-living, plant symbiotic and pathogenic fungi. The main forms are the monohydrate (whewellite) and the dihydrate (weddelite) and their formation is of significance in biomineralization, since they affect nutritional heterogeneity in soil, especially Ca, P, K and Al cycling. The formation of insoluble toxic metal oxalates, e.g. of Cu, may confer tolerance and ensure survival in contaminated environments. In semiarid environments, calcium oxalate formation is important in the formation and alteration of terrestrial subsurface limestones. Oxalate also plays an important role in lignocellulose degradation and plant pathogenesis, affecting activities of key enzymes and metal oxidoreduction reactions, therefore underpinning one of the most fundamental roles of fungi in carbon cycling in the natural environment. This review discusses the physiology and chemistry of citric and oxalic acid production in fungi, the intimate association of these acids and processes with metal speciation, physiology and mobility, and their importance and involvement in key fungal-mediated processes, including lignocellulose degradation, plant pathogenesis and metal biogeochemistry.

644 citations

Journal ArticleDOI
TL;DR: An alternative approach is considered to the difficulties caused by infeasibility in outer approximation, in which exact penalty functions are used to solve the NLP subproblems.
Abstract: A wide range of optimization problems arising from engineering applications can be formulated as Mixed Integer NonLinear Programming problems (MINLPs). Duran and Grossmann (1986) suggest an outer approximation scheme for solving a class of MINLPs that are linear in the integer variables by a finite sequence of relaxed MILP master programs and NLP subproblems. Their idea is generalized by treating nonlinearities in the integer variables directly, which allows a much wider class of problem to be tackled, including the case of pure INLPs. A new and more simple proof of finite termination is given and a rigorous treatment of infeasible NLP subproblems is presented which includes all the common methods for resolving infeasibility in Phase I. The worst case performance of the outer approximation algorithm is investigated and an example is given for which it visits all integer assignments. This behaviour leads us to include curvature information into the relaxed MILP master problem, giving rise to a new quadratic outer approximation algorithm. An alternative approach is considered to the difficulties caused by infeasibility in outer approximation, in which exact penalty functions are used to solve the NLP subproblems. It is possible to develop the theory in an elegant way for a large class of nonsmooth MINLPs based on the use of convex composite functions and subdifferentials, although an interpretation for thel 1 norm is also given.

643 citations


Authors

Showing all 19404 results

NameH-indexPapersCitations
Matthias Mann221887230213
Mark I. McCarthy2001028187898
Stefan Schreiber1781233138528
Kenneth C. Anderson1781138126072
Masayuki Yamamoto1711576123028
Salvador Moncada164495138030
Jorge E. Cortes1632784124154
Andrew P. McMahon16241590650
Philip Cohen154555110856
Dirk Inzé14964774468
Andrew T. Hattersley146768106949
Antonio Lanzavecchia145408100065
Kim Nasmyth14229459231
David Price138168793535
Dario R. Alessi13635474753
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

University of Manchester
168K papers, 6.4M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202361
2022205
20211,653
20201,520
20191,473
20181,524