scispace - formally typeset
Search or ask a question
Institution

University of Dundee

EducationDundee, United Kingdom
About: University of Dundee is a education organization based out in Dundee, United Kingdom. It is known for research contribution in the topics: Population & Protein kinase A. The organization has 19258 authors who have published 39640 publications receiving 1919433 citations. The organization is also known as: Universitas Dundensis & Dundee University.


Papers
More filters
Journal ArticleDOI
01 Oct 1984-Nature
TL;DR: It is reported here that serially cultured adult papilla cells can induce the growth of hair when implanted into follicles which otherwise would not grow hairs.
Abstract: Mammalian hairs are formed by differentiation and keratinization of cells produced in the epidermal matrix (Figs 3, 4). Using the rodent vibrissa follicle as a model1, transplantation studies have shown that the dermal papilla, a discrete population of specialized fibroblasts, is of prime importance in the growth of hair2,3. Papillae induce hair growth when implanted into follicles4,5 and can interact with skin epidermis to form new hair follicles6. When grown in culture, papilla cells display singular morphological and behavioural characteristics compared with connective tissue cells from other skin sources7,8. We report here that serially cultured adult papilla cells can induce the growth of hair when implanted into follicles which otherwise would not grow hairs. This finding presents an opportunity to characterize properties distinguishing the papilla cell population from other skin fibroblasts, and, more specifically, those which control hair growth. The eventual application of this work to human hair replacement techniques can also be envisaged.

629 citations

Journal ArticleDOI
D G Hardie1
TL;DR: Activation of AMPK, either in response to exercise or to pharmacological agents, has considerable potential to reverse the metabolic abnormalities associated with type 2 diabetes and the metabolic syndrome.
Abstract: The AMP-activated protein kinase (AMPK) system is a key player in regulating energy balance at both the cellular and whole-body levels, placing it at centre stage in studies of obesity, diabetes and the metabolic syndrome. It is switched on in response to metabolic stresses such as muscle contraction or hypoxia, and modulated by hormones and cytokines affecting whole-body energy balance such as leptin, adiponectin, resistin, ghrelin and cannabinoids. Once activated, it switches on catabolic pathways that generate adenosine triphosphate (ATP), while switching off ATP-consuming anabolic processes. AMPK exists as heterotrimeric complexes comprising a catalytic alpha-subunit and regulatory beta- and gamma-subunits. Binding of AMP to the gamma-subunit, which is antagonized by high ATP, causes activation of the kinase by promoting phosphorylation at threonine (Thr-172) on the alpha-subunit by the upstream kinase LKB1, allowing the system to act as a sensor of cellular energy status. In certain cells, AMPK is activated in response to elevation of cytosolic Ca2+ via phosphorylation of Thr-172 by calmodulin-dependent kinase kinase-beta (CaMKKbeta). Activation of AMPK, either in response to exercise or to pharmacological agents, has considerable potential to reverse the metabolic abnormalities associated with type 2 diabetes and the metabolic syndrome. Two existing classes of antidiabetic drugs, that is, biguanides (for example, metformin) and the thiazolidinediones (for example, rosiglitazone), both act (at least in part) by activation of AMPK. Novel drugs activating AMPK may also have potential for the treatment of obesity.

627 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that substitutional doping of an amorphous semiconductor is possible and can provide control of the electronic properties over a wide range, which corresponds to a movement of the Fermi level of 1·2 eV.
Abstract: It is shown that substitutional doping of an amorphous semiconductor is possible and can provide control of the electronic properties over a wide range. a-Si and Ge specimens have been prepared by the decomposition of silane (or germane) in a radio-frequency (r.f.) glow discharge. Doping is achieved by adding carefully measured amounts of phosphine or diborane, between 5 × 10−6 and 10−2 parts per volume, to obtain n- or p-type specimens. The room temperature conductivity of doped a-Si specimens can be controlled reproducibly over about 10 orders of magnitude, which corresponds to a movement of the Fermi level of 1·2 eV. Ion probe analysis on phosphorus doped specimens indicates that about half the phosphine molecules in the gaseous mixture introduce a phosphorus atom into the Si random network; it is estimated that 30–40% of these will act as substitutional donors. The results also show that the number of incorporated phosphorus atoms saturates at about 3 × 1019 cm−3, roughly equal to the number ...

624 citations

Journal ArticleDOI
01 Jan 1984

623 citations

Journal ArticleDOI
25 Sep 2003-Neuron
TL;DR: The data demonstrate that FGF and RA pathways are mutually inhibitory and suggest that their opposing actions provide a global mechanism that controls differentiation during axis extension.

622 citations


Authors

Showing all 19404 results

NameH-indexPapersCitations
Matthias Mann221887230213
Mark I. McCarthy2001028187898
Stefan Schreiber1781233138528
Kenneth C. Anderson1781138126072
Masayuki Yamamoto1711576123028
Salvador Moncada164495138030
Jorge E. Cortes1632784124154
Andrew P. McMahon16241590650
Philip Cohen154555110856
Dirk Inzé14964774468
Andrew T. Hattersley146768106949
Antonio Lanzavecchia145408100065
Kim Nasmyth14229459231
David Price138168793535
Dario R. Alessi13635474753
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

University of Manchester
168K papers, 6.4M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202361
2022205
20211,653
20201,520
20191,473
20181,524