scispace - formally typeset
Search or ask a question
Institution

University of East Anglia

EducationNorwich, Norfolk, United Kingdom
About: University of East Anglia is a education organization based out in Norwich, Norfolk, United Kingdom. It is known for research contribution in the topics: Population & Climate change. The organization has 13250 authors who have published 37504 publications receiving 1669060 citations. The organization is also known as: UEA.


Papers
More filters
Journal ArticleDOI
TL;DR: The structure of the individual domains of a number of matrix metalloproteinases have now been elucidated, and in particular the C-terminal hemopexin-like domain is focused on which has intriguingly specific roles in individual matrix meetallop Proteinases.

306 citations

Journal ArticleDOI
TL;DR: Cardiac rehabilitation may make little or no difference in all-cause mortality over the short term, but may improve all- Cause mortality in the long term (> 12 months follow-up) and downgraded results using the GRADE tool for all but one outcome.
Abstract: Background Chronic heart failure (HF) is a growing global health challenge. People with HF experience substantial burden that includes low exercise tolerance, poor health-related quality of life (HRQoL), increased risk of mortality and hospital admission, and high healthcare costs. The previous (2014) Cochrane systematic review reported that exercise-based cardiac rehabilitation (CR) compared to no exercise control shows improvement in HRQoL and hospital admission among people with HF, as well as possible reduction in mortality over the longer term, and that these reductions appear to be consistent across patient and programme characteristics. Limitations noted by the authors of this previous Cochrane Review include the following: (1) most trials were undertaken in patients with HF with reduced (< 45%) ejection fraction (HFrEF), and women, older people, and those with preserved (≥ 45%) ejection fraction HF (HFpEF) were under-represented; and (2) most trials were undertaken in the hospital/centre-based setting. Objectives To determine the effects of exercise-based cardiac rehabilitation on mortality, hospital admission, and health-related quality of life of people with heart failure. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and three other databases on 29 January 2018. We also checked the bibliographies of systematic reviews and two trial registers. Selection criteria We included randomised controlled trials that compared exercise-based CR interventions with six months’ or longer follow-up versus a no exercise control that could include usual medical care. The study population comprised adults (> 18 years) with evidence of HF - either HFrEF or HFpEF. Data collection and analysis Two review authors independently screened all identified references and rejected those that were clearly ineligible for inclusion in the review. We obtained full papers of potentially relevant trials. Two review authors independently extracted data from the included trials, assessed their risk of bias, and performed GRADE analyses. Main results We included 44 trials (5783 participants with HF) with a median of six months’ follow-up. For this latest update, we identified 11 new trials (N = 1040), in addition to the previously identified 33 trials. Although the evidence base includes predominantly patients with HFrEF with New York Heart Association classes II and III receiving centre-based exercise-based CR programmes, a growing body of studies include patients with HFpEF and are undertaken in a home-based setting. All included studies included a no formal exercise training intervention comparator. However, a wide range of comparators were seen across studies that included active intervention (i.e. education, psychological intervention) or usual medical care alone. The overall risk of bias of included trials was low or unclear, and we downgraded results using the GRADE tool for all but one outcome. Cardiac rehabilitation may make little or no difference in all-cause mortality over the short term (≤ one year of follow-up) (27 trials, 28 comparisons (2596 participants): intervention 67/1302 (5.1%) vs control 75/1294 (5.8%); risk ratio (RR) 0.89, 95% confidence interval (CI) 0.66 to 1.21; low-quality GRADE evidence) but may improve all-cause mortality in the long term (> 12 months follow up) (6 trials/comparisons (2845 participants): intervention 244/1418 (17.2%) vs control 280/1427 (19.6%) events): RR 0.88, 95% CI 0.75 to 1.02; high-quality evidence). Researchers provided no data on deaths due to HF. CR probably reduces overall hospital admissions in the short term (up to one year of follow-up) (21 trials, 21 comparisons (2182 participants): (intervention 180/1093 (16.5%) vs control 258/1089 (23.7%); RR 0.70, 95% CI 0.60 to 0.83; moderate-quality evidence, number needed to treat: 14) and may reduce HF-specific hospitalisation (14 trials, 15 comparisons (1114 participants): (intervention 40/562 (7.1%) vs control 61/552 (11.1%) RR 0.59, 95% CI 0.42 to 0.84; low-quality evidence, number needed to treat: 25). After CR, a clinically important improvement in shortterm disease-specific health-related quality of life may be evident (Minnesota Living With Heart Failure questionnaire - 17 trials, 18 comparisons (1995 participants): mean difference (MD) -7.11 points, 95% CI -10.49 to -3.73; low-quality evidence). Pooling across all studies, regardless of the HRQoL measure used, shows there may be clinically important improvement with exercise (26 trials, 29 comparisons (3833 participants); standardised mean difference (SMD) -0.60, 95% CI -0.82 to -0.39; I² = 87%; Chi² = 215.03; lowquality evidence). ExCR effects appeared to be consistent different models of ExCR delivery: centre vs. home-based, exercise dose, exercise only vs. comprehensive programmes, and aerobic training alone vs aerobic plus resistance programmes. Authors’ conclusions This updated Cochrane Review provides additional randomised evidence (11 trials) to support the conclusions of the previous version (2014) of this Cochane Review. Compared to no exercise control, CR appears to have no impact on mortality in the short term (< 12 months’ follow-up). Low- to moderate-quality evidence shows that CR probably reduces the risk of all-cause hospital admissions and may reduce HF-specific hospital admissions in the short term (up to 12 months). CR may confer a clinically important improvement in health-related quality of life, although we remain uncertain about this because the evidence is of low quality. Future ExCR trials need to continue to consider the recruitment of traditionally less represented HF patient groups including older, female, and HFpEF patients, and alternative CR delivery settings including home- and using technology-based programmes.

305 citations

Journal ArticleDOI
TL;DR: This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets, including recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Abstract: . Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3 , NH3 , HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.

305 citations

Journal ArticleDOI
TL;DR: In this paper, a new mechanistic model based on surface water turbulence was proposed to predict gas exchange for a range of aquatic and marine processes, showing that the gas transfer rate varies linearly with the turbulent dissipation rate to the 1/4 power.
Abstract: [1] Air-water gas transfer influences CO 2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the 1/4 power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.

305 citations

Journal ArticleDOI
TL;DR: It is concluded that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.
Abstract: In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.

305 citations


Authors

Showing all 13512 results

NameH-indexPapersCitations
George Davey Smith2242540248373
Nicholas J. Wareham2121657204896
Cyrus Cooper2041869206782
Kay-Tee Khaw1741389138782
Phillip A. Sharp172614117126
Rory Collins162489193407
William J. Sutherland14896694423
Shah Ebrahim14673396807
Kenneth M. Yamada13944672136
Martin McKee1381732125972
David Price138168793535
Sheila Bingham13651967332
Philip Jones13564490838
Peter M. Rothwell13477967382
Ivan Reid131131885123
Network Information
Related Institutions (5)
University of Bristol
113.1K papers, 4.9M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Utrecht University
139.3K papers, 6.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022385
20212,204
20202,121
20191,957
20181,798