scispace - formally typeset
Search or ask a question
Institution

University of East Anglia

EducationNorwich, Norfolk, United Kingdom
About: University of East Anglia is a education organization based out in Norwich, Norfolk, United Kingdom. It is known for research contribution in the topics: Population & Climate change. The organization has 13250 authors who have published 37504 publications receiving 1669060 citations. The organization is also known as: UEA.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the current understanding of the global dust cycle and identifies future research needs can be found in this paper, where the global distribution of desert dust is estimated from a combination of observations of dust from in situ concentration, optical depth, and deposition data; observations from satellite; and global atmospheric models.
Abstract: [1] Since iron is an important micronutrient, deposition of iron in mineral aerosols can impact the carbon cycle and atmospheric CO2. This paper reviews our current understanding of the global dust cycle and identifies future research needs. The global distribution of desert dust is estimated from a combination of observations of dust from in situ concentration, optical depth, and deposition data; observations from satellite; and global atmospheric models. The anthropogenically influenced portion of atmospheric desert dust flux is thought to be smaller than the natural portion, but is difficult to quantify due to the poorly understood response of desert dust to changes in climate, land use, and water use. The iron content of aerosols is thought to vary by a factor of 2, while the uncertainty in dust deposition is at least a factor of 10 in some regions due to the high spatial and temporal variability and limited observations. Importantly, we have a limited understanding of the processes by which relatively insoluble soil iron (typically ∼0.5% is soluble) becomes more soluble (1–80%) during atmospheric transport, but these processes could be impacted by anthropogenic emissions of sulfur or organic acids. In order to understand how humans will impact future iron deposition to the oceans, we need to improve our understanding of: iron deposition to remote oceans, iron chemistry in aerosols, how desert dust sources will respond to climate change, and how humans will impact the transport of bioavailable fraction of iron to the oceans.

944 citations

Journal ArticleDOI
01 Jan 1987-Gene
TL;DR: A new, heterologous, dominant marker for selection of Aspergillus transformants is described, based on the Escherichia coli hygromycin B (HmB) phosphotransferase gene (hph), which confers HmB resistance to As pergillus species.

928 citations

Journal ArticleDOI
TL;DR: There is an urgent need for improved methods of detecting marine extinctions at various spatial scales, and for predicting the vulnerability of species.
Abstract: Human impacts on the world's oceans have been substantial, leading to concerns about the extinction of marine taxa. We have compiled 133 local, regional and global extinctions of marine populations. There is typically a 53-year lag between the last sighting of an organism and the reported date of the extinction at whatever scale this has occurred. Most disappearances (80%) were detected using indirect historical comparative methods, which suggests that marine extinctions may have been underestimated because of low-detection power. Exploitation caused most marine losses at various scales (55%), followed closely by habitat loss (37%), while the remainder were linked to invasive species, climate change, pollution and disease. Several perceptions concerning the vulnerability of marine organisms appear to be too general and insufficiently conservative. Marine species cannot be considered less vulnerable on the basis of biological attributes such as high fecundity or large-scale dispersal characteristics. For commercially exploited species, it is often argued that economic extinction of exploited populations will occur before biological extinction, but this is not the case for non-target species caught in multispecies fisheries or species with high commercial value, especially if this value increases as species become rare. The perceived high potential for recovery, high variability and low extinction vulnerability of fish populations have been invoked to avoid listing commercial species of fishes under international threat criteria. However, we need to learn more about recovery, which may be hampered by negative population growth at small population sizes (Allee effect or depensation) or ecosystem shifts, as well as about spatial dynamics and connectivity of subpopulations before we can truly understand the nature of responses to severe depletions. The evidence suggests that fish populations do not fluctuate more than those of mammals, birds and butterflies, and that fishes may exhibit vulnerability similar to mammals, birds and butterflies. There is an urgent need for improved methods of detecting marine extinctions at various spatial scales, and for predicting the vulnerability of species.

927 citations

Journal ArticleDOI
TL;DR: In this paper, the authors see participation as a dynamic process, and understand that its own form and function can become a focus for struggle, and that participation may take place for a whole range of unfree reasons.
Abstract: Participation must be seen as political. There are always tensions underlying issues such as who is involved, how, and on whose terms. While participation has the potential to challenge patterns of dominance, it may also be the means through which existing power relations are entrenched and reproduced. The arenas in which people perceive their interests and judge whether they can express them are not neutral. Participation may take place for a whole range of unfree reasons. It is important to see participation as a dynamic process, and to understand that its own form and function can become a focus for struggle.

924 citations

Journal ArticleDOI
TL;DR: In this paper, a comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment.
Abstract: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (>60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate < 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.

921 citations


Authors

Showing all 13512 results

NameH-indexPapersCitations
George Davey Smith2242540248373
Nicholas J. Wareham2121657204896
Cyrus Cooper2041869206782
Kay-Tee Khaw1741389138782
Phillip A. Sharp172614117126
Rory Collins162489193407
William J. Sutherland14896694423
Shah Ebrahim14673396807
Kenneth M. Yamada13944672136
Martin McKee1381732125972
David Price138168793535
Sheila Bingham13651967332
Philip Jones13564490838
Peter M. Rothwell13477967382
Ivan Reid131131885123
Network Information
Related Institutions (5)
University of Bristol
113.1K papers, 4.9M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Utrecht University
139.3K papers, 6.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022385
20212,204
20202,121
20191,957
20181,798