scispace - formally typeset
Search or ask a question
Institution

University of East Anglia

EducationNorwich, Norfolk, United Kingdom
About: University of East Anglia is a education organization based out in Norwich, Norfolk, United Kingdom. It is known for research contribution in the topics: Population & Climate change. The organization has 13250 authors who have published 37504 publications receiving 1669060 citations. The organization is also known as: UEA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that global land precipitation has increased by about 9 mm over the twentieth century (a trend of 0.89 mm/decade), which is relatively small compared with interannual and multi-decadal variability.
Abstract: Concern about anthropogenic climate change has heightened the need for accurate information about spatial and temporal variations in precipitation at the Earth’s surface. Large-scale precipitation estimates can be derived from either surface gauge measurements or by satellite remote sensing, both of which have shortcomings. Gauge measurements provide information about trends and variability of monthly precipitation throughout the entire twentieth century, but because of the lack of data from most ocean regions, this information is representative of only about 25–30% of the Earth’s surface. In contrast, satellite (especially multi-platform) measurements provide spatially complete coverage at monthly to subdaily resolution, but do not extend back beyond 1974. Merged gauge–satellite datasets maximize (and minimize) the relative benefits (and shortcomings) of each source type. While these merged products only extend back to 1979, their importance will grow as we move into the new century. Precipitation gauge data indicate that global land precipitation (excluding Antarctica) has increased by about 9 mm over the twentieth century (a trend of 0.89 mm/decade), which is relatively small compared with interannual and multi-decadal variability. Within this century-long trend, global precipitation exhibits considerable variability on decadal time-scales, with departures of up to 40 mm from the century mean of about 950 mm. Regionally, precipitation has increased over most land areas, with the exception of tropical North Africa, and parts of southern Africa, Amazonia and western South America. The dominant mode of interannual variability in global and

550 citations

Book Chapter
29 Aug 2014
TL;DR: In this paper, the authors consider a single period during which ecological stocks are maintained at sustainable levels, and discuss the treatment of future costs and benefits, with a particular focus upon stocks which exhibit thresholds below which restoration is compromised.
Abstract: The paper seeks to contribute to the expanding literature on ecosystem service assessment by considering its integration with economic analyses of such services. Focussing upon analyses for future orientated policy and decision making, we initially consider a single period during which ecological stocks are maintained at sustainable levels. The flow of ecosystems services and their contribution to welfare bearing goods is considered and methods for valuing resultant benefits are reviewed and illustrated via a case study of land use change. We then broaden our time horizon to discuss the treatment of future costs and benefits. Finally we relax our sustainability assumption and consider economic approaches to the incorporation of depleting ecological assets with a particular focus upon stocks which exhibit thresholds below which restoration is compromised.

548 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the points they see as problematic with Wallace's framework and set out their conceptualization of linking ecosystem services with human welfare, and suggest that utilizing the terms intermediate services, final services and benefits should go a long way to clearing up much of the ambiguity in ecosystem services typologies, especially for economic valuation purposes.

548 citations

Journal ArticleDOI
TL;DR: In two linked, shallow, freshwater basins, phytoplankton densities in summer were very different as discussed by the authors, with a large stand of water lilies and the adjacent open water was clear with chlorophyll a concentrations generally 100 pg*literl.
Abstract: In two linked, shallow, freshwater basins, phytoplankton densities in summer were very different. Hudsons Bay supported a large stand of water lilies, and the adjacent open water was clear with chlorophyll a concentrations generally 100 pg*literl. Hudsons Bay water, in bioassays, could support great phytoplankton growth in summer and did so in spring and fall. The period of clear water coincided with the presence of the lily stand. Zooplankton populations were of rotifers and small-bodied Cladocera in Hoveton Great Broad, but mostly of Cladocera, including large-bodied individuals of plantassociated species, in Hudsons Bay. Zooplanktivorous fish were present and there was evidence of feeding by them in both basins. Coexistence with fish of the large, apparently efficiently grazing Cladocera in Hudsons Bay depended on provision of daytime refuges for the Cladocera among the lilies, and grazing was greatest in the adjacent open water at night. Grazing control was helped by a hydrological regime which favored small and rapidly growing phytoplankters, rather than inedible colonial forms with slow growth. Weed-associated grazers may be important in maintaining the dominance of aquatic plants in shallow lakes which would otherwise more rapidly become dominated by phytoplankton as nutrient loading increased.

546 citations

Journal ArticleDOI
Dorthe Dahl-Jensen, Mary R. Albert1, Ala Aldahan2, Nobuhiko Azuma3, David Balslev-Clausen4, Matthias Baumgartner, Ann-Marie Berggren2, Matthias Bigler, Tobias Binder5, Thomas Blunier, J. C. Bourgeois6, Edward J. Brook7, Susanne L Buchardt4, Christo Buizert, Emilie Capron, Jérôme A Chappellaz8, J. Chung9, Henrik Clausen4, Ivana Cvijanovic4, Siwan M. Davies10, Peter D. Ditlevsen4, Olivier Eicher11, Hubertus Fischer11, David A. Fisher6, L. G. Fleet12, Gideon Gfeller11, Vasileios Gkinis4, Sivaprasad Gogineni13, Kumiko Goto-Azuma14, Aslak Grinsted4, H. Gudlaugsdottir15, Myriam Guillevic4, S. B. Hansen4, Martin Hansson16, Motohiro Hirabayashi14, S. Hong, S. D. Hur9, Philippe Huybrechts17, Christine S. Hvidberg4, Yoshinori Iizuka16, Theo M. Jenk4, Sigfus J Johnsen4, Tyler R. Jones18, Jean Jouzel, Nanna B. Karlsson4, Kenji Kawamura14, Kaitlin M. Keegan1, E. Kettner4, Sepp Kipfstuhl19, Helle Astrid Kjær4, Michelle Koutnik20, Takayuki Kuramoto14, Peter Köhler19, Thomas Laepple19, Amaelle Landais, Peter L. Langen4, L. B. Larsen4, Daiana Leuenberger11, Markus Leuenberger, Carl Leuschen13, J. Li13, Vladimir Ya. Lipenkov21, Patricia Martinerie8, Olivia J. Maselli22, Valérie Masson-Delmotte, Joseph R. McConnell22, Heinrich Miller19, Olivia Mini11, A. Miyamoto23, M. Montagnat-Rentier24, Robert Mulvaney12, Raimund Muscheler, Anais Orsi25, John Paden13, Christian Panton4, Frank Pattyn26, Jean-Robert Petit8, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet24, Sune Olander Rasmussen4, Dominique Raynaud8, J. Ren, C. Reutenauer4, Catherine Ritz8, Thomas Röckmann, Jean Rosen7, Mauro Rubino, Oleg Rybak19, Denis Samyn2, Célia Sapart27, Adrian Schilt28, A. Schmidt4, Jakob Schwander11, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus25, Simon G. Sheldon4, Sebastian B. Simonsen4, Jesper Sjolte, Anne M. Solgaard4, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen29, Konrad Steffen30, J. P. Steffensen31, Daniel Steinhage19, Thomas F. Stocker, C. Stowasser18, A. S. Sturevik32, W. T. Sturges33, Arny E. Sveinbjörnsdottir29, A. Svensson30, Jean-Louis Tison31, J. Uetake34, Paul Vallelonga, R. S. W. van de Wal19, G. van der Wel11, Bruce H. Vaughn4, Bo Møllesøe Vinther2, E. Waddington35, Anna Wegner, Ilka Weikusat19, James W. C. White26, Frank Wilhelms19, Mai Winstrup4, Emmanuel Witrant, Eric W. Wolff11, C. Xiao, J. Zheng36 
24 Jan 2013-Nature
TL;DR: In this paper, the North Greenland Eemian Ice Drilling (NEEM) ice core was extracted from folded Greenland ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

546 citations


Authors

Showing all 13512 results

NameH-indexPapersCitations
George Davey Smith2242540248373
Nicholas J. Wareham2121657204896
Cyrus Cooper2041869206782
Kay-Tee Khaw1741389138782
Phillip A. Sharp172614117126
Rory Collins162489193407
William J. Sutherland14896694423
Shah Ebrahim14673396807
Kenneth M. Yamada13944672136
Martin McKee1381732125972
David Price138168793535
Sheila Bingham13651967332
Philip Jones13564490838
Peter M. Rothwell13477967382
Ivan Reid131131885123
Network Information
Related Institutions (5)
University of Bristol
113.1K papers, 4.9M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Utrecht University
139.3K papers, 6.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022385
20212,203
20202,121
20191,957
20181,798