scispace - formally typeset
Search or ask a question
Institution

University of Electro-Communications

EducationTokyo, Japan
About: University of Electro-Communications is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Laser & Robot. The organization has 8041 authors who have published 16950 publications receiving 235832 citations. The organization is also known as: UEC & Denki-Tsūshin Daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed to obtain a low-energy beam from an energetic RI-beam leaving a RIKEN projectile fragment separator by using a large gas-catcher and an rf ion-guide system.
Abstract: The projectile fragment separator provides a wide variety of short-lived RI-ions with less restrictions on their chemical property or lifetime limit. The beam energy and quality is, however, not adequate for low-energy beam experiments, in particular for trapping experiments. Recently, one has proposed to obtain a low-energy beam from an energetic RI-beam leaving a projectile fragment separator by using a large gas-catcher and an rf ion-guide system. In off-line and in on-line test experiments, the principle of the rf ion-guide was proven. An overall efficiency of 0.2% for 70 MeV/u 8 Li from the RIKEN projectile fragment separator (RIPS) was obtained so far.

138 citations

Proceedings ArticleDOI
14 Nov 2009
TL;DR: The present method calculates the O(N log N) treecode and O (N) fast multipole method (FMM) on the GPUs with unprecedented efficiency and demonstrates the performance of the method by choosing one standard application -a gravitational N-body simulation- and one non-standard application -simulation of turbulence using vortex particles.
Abstract: As an entry for the 2009 Gordon Bell price/performance prize, we present the results of two different hierarchical N-body simulations on a cluster of 256 graphics processing units (GPUs). Unlike many previous N-body simulations on GPUs that scale as O(N2), the present method calculates the O(N log N) treecode and O(N) fast multipole method (FMM) on the GPUs with unprecedented efficiency. We demonstrate the performance of our method by choosing one standard application --a gravitational N-body simulation-- and one non-standard application --simulation of turbulence using vortex particles. The gravitational simulation using the treecode with 1,608,044,129 particles showed a sustained performance of 42.15 TFlops. The vortex particle simulation of homogeneous isotropic turbulence using the periodic FMM with 16,777,216 particles showed a sustained performance of 20.2 TFlops. The overall cost of the hardware was 228,912 dollars. The maximum corrected performance is 28.1TFlops for the gravitational simulation, which results in a cost performance of 124 MFlops/$. This correction is performed by counting the Flops based on the most efficient CPU algorithm. Any extra Flops that arise from the GPU implementation and parameter differences are not included in the 124 MFlops/$.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the general strategies and recent developments of the controlled synthesis of colloidal semiconductor nanocrystals in terms of crystalline structure, particle size, dominant exposed facet, and their surface passivation are discussed.
Abstract: Colloidal semiconductor nanocrystals (CS-NCs) possess compelling benefits of low-cost, large-scale solution processing, and tunable optoelectronic properties through controlled synthesis and surface chemistry engineering. These merits make them promising candidates for a variety of applications. This review focuses on the general strategies and recent developments of the controlled synthesis of CS-NCs in terms of crystalline structure, particle size, dominant exposed facet, and their surface passivation. Highlighted are the organic-media based synthesis of metal chalcogenide (including cadmium, lead, and copper chalcogenide) and metal oxide (including titanium oxide and zinc oxide) nanocrystals. Current challenges and thus future opportunities are also pointed out in this review.

138 citations

Journal ArticleDOI
TL;DR: A new electrocardiogram compression method based on orthonormal wavelet transform and an adaptive quantization strategy, by which a predetermined percent root mean square difference (PRD) can be guaranteed with high compression ratio and low implementation complexity are presented.
Abstract: This paper presents a new electrocardiogram (ECG) compression method based on orthonormal wavelet transform and an adaptive quantization strategy, by which a predetermined percent root mean square difference (PRD) can be guaranteed with high compression ratio and low implementation complexity.

138 citations


Authors

Showing all 8079 results

NameH-indexPapersCitations
Mildred S. Dresselhaus136762112525
Matthew Nguyen131129184346
Juan Bisquert10745046267
Dapeng Yu9474533613
Riichiro Saito9150248869
Shun-ichi Amari9049540383
Shigeru Nagase7661722099
Ingrid Verbauwhede7257521110
Satoshi Hasegawa6970822153
Yu Qiao6948429922
Yukio Tanaka6874419942
Zhijun Li6861414518
Iván Mora-Seró6723523229
Kazuo Tanaka6353527559
Da Xing6362414766
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

93% related

Waseda University
46.8K papers, 837.8K citations

93% related

National Chiao Tung University
52.4K papers, 956.2K citations

90% related

NEC
57.6K papers, 835.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202258
2021644
2020815
2019908
2018837