scispace - formally typeset
Search or ask a question
Institution

University of Electronic Science and Technology of China

EducationChengdu, China
About: University of Electronic Science and Technology of China is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Antenna (radio) & Dielectric. The organization has 50594 authors who have published 58502 publications receiving 711188 citations. The organization is also known as: UESTC.


Papers
More filters
Journal ArticleDOI
TL;DR: OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model, and the generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship.
Abstract: Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.

233 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of DTN is presented to explore the potentiality of DT and depict the typical application scenarios such as manufacturing, aviation, healthcare, 6G networks, Intelligent Transportation Systems and urban intelligence in smart cities.
Abstract: Digital twin network (DTN) is an emerging network that utilizes digital twin (DT) technology to create the virtual twins of physical objects. DTN realizes co-evolution between physical and virtual spaces through DT modeling, communication, computing, data processing technologies. In this article, we present a comprehensive survey of DTN to explore the potentiality of DT. First, we elaborate key features and definitions of DTN. Next, the key technologies and the technical challenges in DTN are discussed. Furthermore, we depict the typical application scenarios, such as manufacturing, aviation, healthcare, 6G networks, intelligent transportation systems, and urban intelligence in smart cities. Finally, the new trends and open research issues related to DTN are pointed out.

232 citations

Journal ArticleDOI
TL;DR: Findings indicated DMN abnormalities in patients with absence epilepsy, even during resting interictal durations without interdictal epileptic discharges, may reflect abnormal anatomo‐functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure.
Abstract: Dysfunctional default mode network (DMN) has been observed in various mental disorders, including epilepsy (see review Broyd et al. (2009): Neurosci Biobehav Rev 33:279-296). Because interic- tal epileptic discharges may affect DMN, resting-state fMRI was used in this study to determine DMN functional connectivity in 14 healthy controls and 12 absence epilepsy patients. To avoid interictal epi- leptic discharge effects, testing was performed within interictal durations when there were no interictal epileptic discharges. Cross-correlation functional connectivity analysis with seed at posterior cingulate cortex, as well as region-wise calculation in DMN, revealed decreased integration within DMN in the absence epilepsy patients. Region-wise functional connectivity among the frontal, parietal, and tempo- ral lobe was significantly decreased in the patient group. Moreover, functional connectivity between the frontal and parietal lobe revealed a significant negative correlation with epilepsy duration. These findings indicated DMN abnormalities in patients with absence epilepsy, even during resting interictal durations without interictal epileptic discharges. Abnormal functional connectivity in absence epilepsy may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Hum Brain Mapp 00:000-000, 2010. V C 2010 Wiley-Liss, Inc.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a general theory on skyrmion size and wall width, which are two fundamental quantities of a topological object that depend sensitively on material parameters such as exchange energy, magnetic anisotropy, Dzyaloshinskii-Moriya interaction, and magnetic field.
Abstract: A magnetic skyrmion is a topological object consisting of a skyrmion core, an outer domain, and a wall that separates the skyrmion core from the outer domain. The skyrmion size and wall width are two fundamental quantities of a skyrmion that depend sensitively on material parameters such as exchange energy, magnetic anisotropy, Dzyaloshinskii–Moriya interaction, and magnetic field. However, quantitative understanding of the two quantities is still very poor. Here we present a general theory on skyrmion size and wall width. The two formulas we obtained agree almost perfectly with simulations and experiments for a wide range of parameters, including most of the existing materials that support skyrmions.

232 citations

Journal ArticleDOI
TL;DR: The synthesis of atomically thin 2D γ-boron films on copper foils is achieved by chemical vapor deposition using a mixture of pure boron andboron oxide powders as the borons source and hydrogen gas as the carrier gas.
Abstract: Two-dimensional boron materials have recently attracted extensive theoretical interest because of their exceptional structural complexity and remarkable physical and chemical properties. However, such 2D boron monolayers have still not been synthesized. In this report, the synthesis of atomically thin 2D γ-boron films on copper foils is achieved by chemical vapor deposition using a mixture of pure boron and boron oxide powders as the boron source and hydrogen gas as the carrier gas. Strikingly, the optical band gap of the boron film was measured to be around 2.25 eV, which is close to the value (2.07 eV) determined by first-principles calculations, suggesting that the γ-B28 monolayer is a fascinating direct band gap semiconductor. Furthermore, a strong photoluminescence emission band was observed at approximately 626 nm, which is again due to the direct band gap. This study could pave the way for applications of two-dimensional boron materials in electronic and photonic devices.

232 citations


Authors

Showing all 51090 results

NameH-indexPapersCitations
Gang Chen1673372149819
Frede Blaabjerg1472161112017
Kuo-Chen Chou14348757711
Yi Yang143245692268
Guanrong Chen141165292218
Shuit-Tong Lee138112177112
Lei Zhang135224099365
Rajkumar Buyya133106695164
Lei Zhang130231286950
Bin Wang126222674364
Haiyan Wang119167486091
Bo Wang119290584863
Yi Zhang11643673227
Qiang Yang112111771540
Chun-Sing Lee10997747957
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023159
2022980
20217,384
20207,220
20196,976