scispace - formally typeset
Search or ask a question
Institution

University of Erlangen-Nuremberg

EducationErlangen, Bayern, Germany
About: University of Erlangen-Nuremberg is a education organization based out in Erlangen, Bayern, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 42405 authors who have published 85600 publications receiving 2663922 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The 10 recommendations are supposed to inform patients, rheumatologists and other stakeholders about strategies to reach optimal outcomes of RA based on evidence and expert opinion.
Abstract: Aiming at therapeutic targets has reduced the risk of organ failure in many diseases such as diabetes or hypertension. Such targets have not been defined for rheumatoid arthritis (RA).

1,676 citations

Journal ArticleDOI
TL;DR: The authors examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects.
Abstract: We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 x 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 x 10(-9)), ANK3 (rs10994359, P = 2.5 x 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 x 10(-9)).

1,671 citations

Journal ArticleDOI
TL;DR: It is reported that embryonic angiogenesis in mice was not affected by deficiency of PlGF, andTransplantation of wild-type bone marrow rescued the impairedAngiogenesis and collateral growth in Pgf−/− mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow–derived cells.
Abstract: Vascular endothelial growth factor (VEGF) stimulates angiogenesis by activating VEGF receptor-2 (VEGFR-2). The role of its homolog, placental growth factor (PlGF), remains unknown. Both VEGF and PlGF bind to VEGF receptor-1 (VEGFR-1), but it is unknown whether VEGFR-1, which exists as a soluble or a membrane-bound type, is an inert decoy or a signaling receptor for PlGF during angiogenesis. Here, we report that embryonic angiogenesis in mice was not affected by deficiency of PlGF (Pgf-/-). VEGF-B, another ligand of VEGFR-1, did not rescue development in Pgf-/- mice. However, loss of PlGF impaired angiogenesis, plasma extravasation and collateral growth during ischemia, inflammation, wound healing and cancer. Transplantation of wild-type bone marrow rescued the impaired angiogenesis and collateral growth in Pgf-/- mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow-derived cells. The synergism between PlGF and VEGF was specific, as PlGF deficiency impaired the response to VEGF, but not to bFGF or histamine. VEGFR-1 was activated by PlGF, given that anti-VEGFR-1 antibodies and a Src-kinase inhibitor blocked the endothelial response to PlGF or VEGF/PlGF. By upregulating PlGF and the signaling subtype of VEGFR-1, endothelial cells amplify their responsiveness to VEGF during the 'angiogenic switch' in many pathological disorders.

1,664 citations

Journal ArticleDOI
TL;DR: This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detectingDNA damage and its future perspectives.
Abstract: Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane–pyrimidine dimers (CPDs) and 6–4 photoproducts (6–4PPs) and their Dewar valence isomers. However, cells have developed a number of repair or tolerance mechanisms to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

1,655 citations


Authors

Showing all 42831 results

NameH-indexPapersCitations
Hermann Brenner1511765145655
Richard B. Devereux144962116403
Manfred Paulini1411791110930
Daniel S. Berman141136386136
Peter Lang140113698592
Joseph Sodroski13854277070
Richard J. Johnson13788072201
Jun Lu135152699767
Michael Schmitt1342007114667
Jost B. Jonas1321158166510
Andreas Mussgiller127105973778
Matthew J. Budoff125144968115
Stefan Funk12550656955
Markus F. Neurath12493462376
Jean-Marie Lehn123105484616
Network Information
Related Institutions (5)
Technische Universität München
123.4K papers, 4M citations

96% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023208
2022660
20215,162
20204,911
20194,593
20184,374