scispace - formally typeset
Search or ask a question
Institution

University of Erlangen-Nuremberg

EducationErlangen, Bayern, Germany
About: University of Erlangen-Nuremberg is a education organization based out in Erlangen, Bayern, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 42405 authors who have published 85600 publications receiving 2663922 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that it is possible to harness the radiation pressure interaction between light and matter to produce unidirectional sound propagation, which can be used in everyday life to propagate sound from one location to another.
Abstract: In everyday life, if sound propagates from one location to another, it can propagate backwards just as easily. However, theorists show that it is possible to harness the radiation pressure interaction between light and matter to produce unidirectional sound propagation.

334 citations

Journal ArticleDOI
TL;DR: Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process, and the microcompartmentalization of FAS activities in type I multienzymes may allow for both the controlled and concerted action of multiple FAS systems within the same cell.
Abstract: The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits alpha and beta are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell.

334 citations

Journal ArticleDOI
TL;DR: In this paper, the interface between graphene and low energy electron diffraction (LEED) was investigated by scanning tunneling microscopy (STM) images and low-energy electron difforescence spectra, and the role of three observed phases with periodicities was discussed.
Abstract: We report on the interface between graphene and $4\mathrm{H}\text{\ensuremath{-}}\mathrm{Si}\mathrm{C}(0001)$ as investigated by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). It is characterized by the so-called $(6\sqrt{3}\ifmmode\times\else\texttimes\fi{}6\sqrt{3})\mathrm{R}30\ifmmode^\circ\else\textdegree\fi{}$ reconstruction, whose structural properties are still controversially discussed but at the same time are crucial for the controlled growth of homogeneous high-quality large-terrace graphene surfaces. We discuss the role of three observed phases with periodicities $(6\sqrt{3}\ifmmode\times\else\texttimes\fi{}6\sqrt{3})\mathrm{R}30\ifmmode^\circ\else\textdegree\fi{}$, $(6\ifmmode\times\else\texttimes\fi{}6)$, and $(5\ifmmode\times\else\texttimes\fi{}5)$. Their LEED intensity levels and spectra strongly depend on the surface preparation procedure applied. The graphitization process imprints distinct features in the STM images as well as in the LEED spectra. The latter have the potential for an easy and practicable determination of the number of graphene layers by means of LEED.

334 citations

Journal ArticleDOI
TL;DR: Non-redundant functions of the core transcription factors that mediate the epithelial–mesenchymal transition are described, and the conflicting results regarding their roles in this process are discussed.
Abstract: Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.

334 citations

Journal ArticleDOI
TL;DR: Her2-positive CTCs can be detected in a relevant number of patients with HER2 negative primary tumors, and it will be mandatory to correlate the assay-dependent HER2 status of C TCs to the clinical response on HER2-targeted therapies.
Abstract: There is a growing body of evidence that HER2 status can change during disease recurrence or progression in breast cancer patients. In this context, re-evaluation of HER2 status by assessment of HER2 expression on circulating tumor cells (CTCs) is a strategy with potential clinical application. The aim of this trial was to determine the HER2 status of CTCs in metastatic breast cancer patients comparing two CTC assays. A total of 254 patients with metastatic breast cancer from nine German university breast cancer centers were enrolled in this prospective study. HER2 status of CTCs was assessed using both the FDA-approved CellSearch® assay and AdnaTest BreastCancer™. Using the CellSearch assay, 122 of 245 (50%) patients had ≥5 CTCs, and HER2-positive CTCs were observed in 50 (41%) of these patients. Ninety of 229 (39%) patients were CTC positive using AdnaTest BreastCancer, and HER2 positivity rate was 47% (42 of 90). The rate of breast cancer patients with HER2-negative primary tumors but HER2-positive CTCs was 32% (25 of 78) and 49% (28 of 57) using the CellSearch assay and AdnaTest BreastCancer, respectively. Considering only those patients who had CTCs on both tests (n = 62), concordant results regarding HER2 positivity were obtained in 50% of the patients (31/62) (P = 0.96, κ = -0.006). HER2-positive CTCs can be detected in a relevant number of patients with HER2 negative primary tumors. Therefore, it will be mandatory to correlate the assay-dependent HER2 status of CTCs to the clinical response on HER2-targeted therapies.

334 citations


Authors

Showing all 42831 results

NameH-indexPapersCitations
Hermann Brenner1511765145655
Richard B. Devereux144962116403
Manfred Paulini1411791110930
Daniel S. Berman141136386136
Peter Lang140113698592
Joseph Sodroski13854277070
Richard J. Johnson13788072201
Jun Lu135152699767
Michael Schmitt1342007114667
Jost B. Jonas1321158166510
Andreas Mussgiller127105973778
Matthew J. Budoff125144968115
Stefan Funk12550656955
Markus F. Neurath12493462376
Jean-Marie Lehn123105484616
Network Information
Related Institutions (5)
Technische Universität München
123.4K papers, 4M citations

96% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023208
2022660
20215,162
20204,911
20194,593
20184,374