scispace - formally typeset
Search or ask a question
Institution

University of Erlangen-Nuremberg

EducationErlangen, Bayern, Germany
About: University of Erlangen-Nuremberg is a education organization based out in Erlangen, Bayern, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 42405 authors who have published 85600 publications receiving 2663922 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This consensus document provides recommendations about the use of CT imaging in patients scheduled for TAVR/TAVI, including data acquisition, interpretation, and reporting.

550 citations

Journal ArticleDOI
TL;DR: A detailed model of the repressor-operator complex has been proposed on the basis of biochemical and genetic data and demonstrated for the Tn10-encoded tet genes, which is the most sensitive effector-inducible system of transcriptional regulation known to date.
Abstract: Tetracycline-resistance determinants encoding active efflux of the drug are widely distributed in gram-negative bacteria and unique with respect to genetic organization and regulation of expression. Each determinant consists of two genes called tetA and tetR, which are oriented with divergent polarity, and between them is a central regulatory region with overlapping promoters and operators. The amino acid sequences of the encoded proteins are 43-78% identical. The resistance protein TetA is a tetracycline/metal-proton antiporter located in the cytoplasmic membrane, while the regulatory protein TetR is a tetracycline inducible repressor. TetR binds via a helix-turn-helix motif to the two tet operators, resulting in repression of both genes. A detailed model of the repressor-operator complex has been proposed on the basis of biochemical and genetic data. The tet genes are differentially regulated so that repressor synthesis can occur before the resistance protein is expressed. This has been demonstrated for the Tn10-encoded tet genes and may be a common property of all tet determinants, as suggested by the similar locations of operators with respect to promoters. Induction is mediated by a tetracycline-metal complex and requires only nanomolar concentrations of the drug. This is the most sensitive effector-inducible system of transcriptional regulation known to date. The crystal structure of the TetR-tetracycline/metal complex shows the Tet repressor in the induced, non-DNA binding conformation. The structural interpretation of many noninducible TetR mutants has offered insight into the conformational changes associated with the switch between inducing and repressing structures of TetR. Tc is buried in the core of TetR, where it is held in place by multiple contacts to the protein.

550 citations

Journal ArticleDOI
TL;DR: Preeclampsia is a state of sympathetic overactivity, which reverts to normal after delivery, which indicates that the increases in peripheral vascular resistance and blood pressure that characterize this disorder are mediated, at least in part, by a substantial increase in sympathetic vasoconstrictor activity.
Abstract: Background Preeclampsia is characterized by a marked increase in peripheral vascular resistance leading to an increase in blood pressure, but the triggering mechanisms are unclear. Methods To determine whether augmented sympathetic vasoconstrictor activity may be an important mechanism in mediating the increase in vasomotor tone, we measured postganglionic sympathetic-nerve activity in the blood vessels of skeletal muscle by means of intraneural microelectrodes in nine women with preeclampsia, eight normotensive pregnant women, six normotensive nonpregnant women, and seven nonpregnant women with hypertension, both at rest and during noninvasive cardiovascular-reflex testing (with the Valsalva maneuver and the cold pressor test). Results The mean (±SE) rate of sympathetic-nerve activity in the normotensive pregnant women (10±1 bursts per minute) was not significantly different from that in normotensive nonpregnant women (12±2 bursts per minute) or hypertensive nonpregnant women (15±3 bursts per minute). In...

550 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the adhesion force exerted by a single gecko spatula for various atmospheric conditions and surface chemistries, and showed that humidity contributes significantly to gecko adhesion on a nanoscopic level.
Abstract: The hairy attachment system on a gecko's toes, consisting of one billion spatulae in the case of Gekko gecko [Ruibal, R. & Ernst, V. (1965) J. Morphol. 117, 271–294], allows it to adhere to nearly all surface topographies. The mechanistic basis for gecko adhesion has been intensely investigated, but the lowest hierarchical level, that of the spatula, has become experimentally accessible only recently. This report details measurements of the adhesion force exerted by a single gecko spatula for various atmospheric conditions and surface chemistries. Through judicious choice and modification of substrates, the short- and long-range adhesive forces are separated. In contrast to previous work [Autumn, K., Sitti, M., Liang, Y. C. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N. & Full, R. J. (2002) Proc. Natl. Acad. Sci. USA 99, 12252–12256], our measurements clearly show that humidity contributes significantly to gecko adhesion on a nanoscopic level. These findings are crucial for the development of artificial biomimetic attachment systems.

549 citations

Journal ArticleDOI
01 Sep 2016-Nature
TL;DR: It is demonstrated that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters.
Abstract: The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

548 citations


Authors

Showing all 42831 results

NameH-indexPapersCitations
Hermann Brenner1511765145655
Richard B. Devereux144962116403
Manfred Paulini1411791110930
Daniel S. Berman141136386136
Peter Lang140113698592
Joseph Sodroski13854277070
Richard J. Johnson13788072201
Jun Lu135152699767
Michael Schmitt1342007114667
Jost B. Jonas1321158166510
Andreas Mussgiller127105973778
Matthew J. Budoff125144968115
Stefan Funk12550656955
Markus F. Neurath12493462376
Jean-Marie Lehn123105484616
Network Information
Related Institutions (5)
Technische Universität München
123.4K papers, 4M citations

96% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023208
2022660
20215,162
20204,911
20194,593
20184,374