Institution
University of Évry Val d'Essonne
Education•Évry, France•
About: University of Évry Val d'Essonne is a education organization based out in Évry, France. It is known for research contribution in the topics: Genome & Scheduling (computing). The organization has 1801 authors who have published 3697 publications receiving 115679 citations. The organization is also known as: UEVE & Université d'Évry Val-d'Essonne.
Papers published on a yearly basis
Papers
More filters
University of Évry Val d'Essonne1, Institut national de la recherche agronomique2, Technical University of Denmark3, Barcelona Supercomputing Center4, University of Copenhagen5, University of Tokyo6, University of Miyazaki7, Wageningen University and Research Centre8, Tokyo Institute of Technology9, French Alternative Energies and Atomic Energy Commission10
TL;DR: Three robust clusters (referred to as enterotypes hereafter) are identified that are not nation or continent specific and confirmed in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
Abstract: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
5,566 citations
TL;DR: A high-quality draft of the genome sequence of grapevine is obtained from a highly homozygous genotype, revealing the contribution of three ancestral genomes to the grapevine haploid content and explaining the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
Abstract: The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
3,311 citations
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
2,118 citations
TL;DR: Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish, and reconstructs much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
Abstract: Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
1,889 citations
University of Évry Val d'Essonne1, Crops Research Institute2, Agriculture and Agri-Food Canada3, Fujian Agriculture and Forestry University4, J. Craig Venter Institute5, Plant Genome Mapping Laboratory6, University of Giessen7, French Alternative Energies and Atomic Energy Commission8, Institut national de la recherche agronomique9, National Research Council10, Australian Centre for Plant Functional Genomics11, University of Cologne12, Purdue University13, University of California, Berkeley14, University of British Columbia15, Fondation Jean Dausset Centre d'Etude du Polymorphisme Humain16, Huazhong Agricultural University17, Hunan Agricultural University18, Chungnam National University19, University of Arizona20, University of York21, University of Missouri22, Southern Cross University23, University of Western Australia24, Centre national de la recherche scientifique25
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.
1,743 citations
Authors
Showing all 1820 results
Name | H-index | Papers | Citations |
---|---|---|---|
Ruedi Aebersold | 182 | 879 | 141881 |
Jean Weissenbach | 127 | 407 | 97552 |
Francis Bach | 110 | 484 | 54944 |
Patrick Wincker | 108 | 366 | 77726 |
Olivier Delattre | 103 | 490 | 39258 |
René Bernards | 97 | 376 | 62175 |
Heribert Hirt | 88 | 252 | 33489 |
Leo Radom | 79 | 604 | 34075 |
Paul T. Spellman | 78 | 216 | 113291 |
Laura Gagliardi | 76 | 486 | 21715 |
Michel Caboche | 75 | 206 | 23821 |
Manuel Bibes | 72 | 303 | 22037 |
Simone Benhamou | 72 | 212 | 17836 |
Piet Herdewijn | 69 | 937 | 22419 |
Vincent Cros | 67 | 283 | 19530 |