scispace - formally typeset
Search or ask a question
Institution

University of Exeter

EducationExeter, United Kingdom
About: University of Exeter is a education organization based out in Exeter, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 15820 authors who have published 50650 publications receiving 1793046 citations. The organization is also known as: Exeter University & University of the South West of England.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the relationship between social identity and symptom appraisal and response, health-related norms and behaviour, social support, coping, and clinical outcomes, and point out the capacity for a social identity approach to enrich academic understanding in these areas and to play a key role in shaping healthrelated policy and practice.
Abstract: The social environment comprising communities, families, neighbourhoods, work teams, and various other forms of social group is not simply an external feature of the world that provides a context for individual behaviour. Instead these groups impact on the psychology of individuals through their capacity to be internalised as part of a person’s social identity. If groups provide individuals with a sense of meaning, purpose, and belonging (i.e. a positive sense of social identity) they tend to have positive psychological consequences. The impact of these identity processes on health and well-being is explored in the contributions to this special issue. In this editorial, we discuss these contributions in light of five central themes that have emerged from research to date. These themes address the relationship between social identity and (a) symptom appraisal and response, (b) health-related norms and behaviour, (c) social support, (d) coping, and (e) clinical outcomes. The special issue as a whole points to the capacity for a social identity approach to enrich academic understanding in these areas and to play a key role in shaping health-related policy and practice.

991 citations

Journal ArticleDOI
TL;DR: In this article, a social identity model of de-individuation (SIDE) is proposed, in which self can be defined at various different levels including the categorical self as well as the personal self.
Abstract: This chapter challenges traditional models of deindividuation. These are based on the assumption that such factors as immersion in a group and anonymity lead to a loss of selfhood and hence of control over behaviour. We argue that such models depend upon an individualistic conception of the self, viewed as a unitary construct referring to that which makes individuals unique. This is rejected in favour of the idea that self can be defined at various different levels including the categorical self as well as the personal self. Hence a social identity model of deindividuation (SIDE) is outlined. Evidence is presented to show that deindividuation manipulations gain effect, firstly, through the ways in which they affect the salience of social identity (and hence conformity to categorical norms) and, secondly, through their effects upon strategic considerations relating to the expression of social identities. We conclude that the classic deindividuation paradigm of anonymity within a social group, far from lead...

987 citations

Journal ArticleDOI
TL;DR: In this article, a review of the application of terahertz time-domain spectroscopy to bulk and nanostructured semiconductors is presented, where the authors present a pump-probe scheme to monitor the nonequilibrium time evolution of carriers and low energy excitations with sub-ps time resolution.
Abstract: Time-resolved, pulsed terahertz spectroscopy has developed into a powerful tool to study charge carrier dynamics in semiconductors and semiconductor structures over the past decades. Covering the energy range from a few to about 100 meV, terahertz radiation is sensitive to the response of charge quasiparticles, e.g., free carriers, polarons, and excitons. The distinct spectral signatures of these different quasiparticles in the THz range allow their discrimination and characterization using pulsed THz radiation. This frequency region is also well suited for the study of phonon resonances and intraband transitions in low-dimensional systems. Moreover, using a pump-probe scheme, it is possible to monitor the nonequilibrium time evolution of carriers and low-energy excitations with sub-ps time resolution. Being an all-optical technique, terahertz time-domain spectroscopy is contact-free and noninvasive and hence suited to probe the conductivity of, particularly, nanostructured materials that are difficult or impossible to access with other methods. The latest developments in the application of terahertz time-domain spectroscopy to bulk and nanostructured semiconductors are reviewed.

987 citations

Proceedings ArticleDOI
02 Nov 2009
TL;DR: A novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA) is proposed, called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text, which is fully unsupervised.
Abstract: Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.

983 citations

Journal ArticleDOI
Pierre Friedlingstein1, Pierre Friedlingstein2, Matthew W. Jones3, Michael O'Sullivan2, Robbie M. Andrew, Judith Hauck4, Glen P. Peters, Wouter Peters5, Wouter Peters6, Julia Pongratz7, Julia Pongratz8, Stephen Sitch2, Corinne Le Quéré3, Dorothee C. E. Bakker3, Josep G. Canadell9, Philippe Ciais10, Robert B. Jackson11, Peter Anthoni12, Leticia Barbero13, Leticia Barbero14, Ana Bastos7, Vladislav Bastrikov10, Meike Becker15, Meike Becker16, Laurent Bopp1, Erik T. Buitenhuis3, Naveen Chandra17, Frédéric Chevallier10, Louise Chini18, Kim I. Currie19, Richard A. Feely20, Marion Gehlen10, Dennis Gilfillan21, Thanos Gkritzalis22, Daniel S. Goll23, Nicolas Gruber24, Sören B. Gutekunst25, Ian Harris26, Vanessa Haverd9, Richard A. Houghton27, George C. Hurtt18, Tatiana Ilyina8, Atul K. Jain28, Emilie Joetzjer10, Jed O. Kaplan29, Etsushi Kato, Kees Klein Goldewijk30, Kees Klein Goldewijk31, Jan Ivar Korsbakken, Peter Landschützer8, Siv K. Lauvset16, Nathalie Lefèvre32, Andrew Lenton33, Andrew Lenton34, Sebastian Lienert35, Danica Lombardozzi36, Gregg Marland21, Patrick C. McGuire37, Joe R. Melton, Nicolas Metzl32, David R. Munro38, Julia E. M. S. Nabel8, Shin-Ichiro Nakaoka39, Craig Neill33, Abdirahman M Omar33, Abdirahman M Omar16, Tsuneo Ono, Anna Peregon40, Anna Peregon10, Denis Pierrot14, Denis Pierrot13, Benjamin Poulter41, Gregor Rehder42, Laure Resplandy43, Eddy Robertson44, Christian Rödenbeck8, Roland Séférian10, Jörg Schwinger30, Jörg Schwinger16, Naomi E. Smith6, Naomi E. Smith45, Pieter P. Tans20, Hanqin Tian46, Bronte Tilbrook33, Bronte Tilbrook34, Francesco N. Tubiello47, Guido R. van der Werf48, Andy Wiltshire44, Sönke Zaehle8 
École Normale Supérieure1, University of Exeter2, Norwich Research Park3, Alfred Wegener Institute for Polar and Marine Research4, University of Groningen5, Wageningen University and Research Centre6, Ludwig Maximilian University of Munich7, Max Planck Society8, Commonwealth Scientific and Industrial Research Organisation9, Centre national de la recherche scientifique10, Stanford University11, Karlsruhe Institute of Technology12, Cooperative Institute for Marine and Atmospheric Studies13, Atlantic Oceanographic and Meteorological Laboratory14, Geophysical Institute, University of Bergen15, Bjerknes Centre for Climate Research16, Japan Agency for Marine-Earth Science and Technology17, University of Maryland, College Park18, National Institute of Water and Atmospheric Research19, National Oceanic and Atmospheric Administration20, Appalachian State University21, Flanders Marine Institute22, Augsburg College23, ETH Zurich24, Leibniz Institute of Marine Sciences25, University of East Anglia26, Woods Hole Research Center27, University of Illinois at Urbana–Champaign28, University of Hong Kong29, Netherlands Environmental Assessment Agency30, Utrecht University31, University of Paris32, Hobart Corporation33, University of Tasmania34, University of Bern35, National Center for Atmospheric Research36, University of Reading37, Cooperative Institute for Research in Environmental Sciences38, National Institute for Environmental Studies39, Russian Academy of Sciences40, Goddard Space Flight Center41, Leibniz Institute for Baltic Sea Research42, Princeton University43, Met Office44, Lund University45, Auburn University46, Food and Agriculture Organization47, VU University Amsterdam48
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land use change, and show that the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere is a measure of imperfect data and understanding of the contemporary carbon cycle.
Abstract: . Accurate assessment of anthropogenic carbon dioxide ( CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( EFF ) are based on energy statistics and cement production data, while emissions from land use change ( ELUC ), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate ( GATM ) is computed from the annual changes in concentration. The ocean CO2 sink ( SOCEAN ) and terrestrial CO2 sink ( SLAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( BIM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr −1 , ELUC 1.5±0.7 GtC yr −1 , GATM 4.9±0.02 GtC yr −1 ( 2.3±0.01 ppm yr −1 ), SOCEAN 2.5±0.6 GtC yr −1 , and SLAND 3.2±0.6 GtC yr −1 , with a budget imbalance BIM of 0.4 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr −1 , reaching 10 GtC yr −1 for the first time in history, ELUC was 1.5±0.7 GtC yr −1 , for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr −1 ( 42.5±3.3 GtCO2 ). Also for 2018, GATM was 5.1±0.2 GtC yr −1 ( 2.4±0.1 ppm yr −1 ), SOCEAN was 2.6±0.6 GtC yr −1 , and SLAND was 3.5±0.7 GtC yr −1 , with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr −1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).

981 citations


Authors

Showing all 16338 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
John C. Morris1831441168413
David W. Johnson1602714140778
Kevin J. Gaston15075085635
Andrew T. Hattersley146768106949
Timothy M. Frayling133500100344
Joel N. Hirschhorn133431101061
Jonathan D. G. Jones12941780908
Graeme I. Bell12753161011
Mark D. Griffiths124123861335
Tao Zhang123277283866
Brinick Simmons12269169350
Edzard Ernst120132655266
Michael Stumvoll11965569891
Peter McGuffin11762462968
Network Information
Related Institutions (5)
University of Birmingham
115.3K papers, 4.3M citations

96% related

University of Manchester
168K papers, 6.4M citations

96% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of Bristol
113.1K papers, 4.9M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023295
2022782
20214,412
20204,192
20193,721
20183,385