scispace - formally typeset
Search or ask a question
Institution

University of Exeter

EducationExeter, United Kingdom
About: University of Exeter is a education organization based out in Exeter, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 15820 authors who have published 50650 publications receiving 1793046 citations. The organization is also known as: Exeter University & University of the South West of England.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a new model of career decision-making, given the shorthand title of "careership", which avoids the twin pitfalls of implicit social determinism or of seeing (young) people as completely free agents.
Abstract: In the current discourse on the transition from school to work, career decision‐making has a pivotal but paradoxical position. Sociological literature emphasises the dominance of socially‐structured pathways, whilst policy‐making operates on assumptions of individual freedom to choose. In this paper we draw on the work of Pierre Bourdieu to present a new model of career decision‐making, given the shorthand title of ‘careership’. There are three completely integrated dimensions to the model. These are (i) pragmatically rational decision‐making, located in the habitus of the person making the decision; (ii) the interactions with others in the (youth training) field, related to the unequal resources different ‘players’ possess; and (iii) the location of decisions within the partly unpredictable pattern of turning‐points and routines that make up the life course. This model avoids the twin pitfalls of implicit social determinism or of seeing (young) people as completely free agents.

622 citations

Journal ArticleDOI
TL;DR: Ascorbic acid (vitamin C) is the most abundant antioxidant in plants and its biosynthetic pathway via GDP-D-mannose and L-galactose, which was proposed only recently, is now supported by molecular genetic evidence from Arabidopsis thaliana and transgenic potato plants.

620 citations

Journal ArticleDOI
TL;DR: Carbon-nitrogen interactions significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.
Abstract: The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 � 15 Pg C yr � 1 ) than JU11 (118 � 6P g Cy r � 1 ). In response to rising atmospheric CO2 concentration, modeled

619 citations

Journal ArticleDOI
10 Mar 2021-BMJ
TL;DR: In this article, a matched cohort study was conducted to establish whether there is any change in mortality from infection with a new variant of SARS-CoV-2, designated a variant of concern (VOC-202012/1) in December 2020, compared with circulating SARS CoV-19 variants.
Abstract: Objective To establish whether there is any change in mortality from infection with a new variant of SARS-CoV-2, designated a variant of concern (VOC-202012/1) in December 2020, compared with circulating SARS-CoV-2 variants. Design Matched cohort study. Setting Community based (pillar 2) covid-19 testing centres in the UK using the TaqPath assay (a proxy measure of VOC-202012/1 infection). Participants 54 906 matched pairs of participants who tested positive for SARS-CoV-2 in pillar 2 between 1 October 2020 and 29 January 2021, followed-up until 12 February 2021. Participants were matched on age, sex, ethnicity, index of multiple deprivation, lower tier local authority region, and sample date of positive specimens, and differed only by detectability of the spike protein gene using the TaqPath assay. Main outcome measure Death within 28 days of the first positive SARS-CoV-2 test result. Results The mortality hazard ratio associated with infection with VOC-202012/1 compared with infection with previously circulating variants was 1.64 (95% confidence interval 1.32 to 2.04) in patients who tested positive for covid-19 in the community. In this comparatively low risk group, this represents an increase in deaths from 2.5 to 4.1 per 1000 detected cases. Conclusions The probability that the risk of mortality is increased by infection with VOC-202012/01 is high. If this finding is generalisable to other populations, infection with VOC-202012/1 has the potential to cause substantial additional mortality compared with previously circulating variants. Healthcare capacity planning and national and international control policies are all impacted by this finding, with increased mortality lending weight to the argument that further coordinated and stringent measures are justified to reduce deaths from SARS-CoV-2.

617 citations

Journal ArticleDOI
21 Feb 2013-Nature
TL;DR: It is estimated that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin, which indicates a much lower risk of Amazon forest dieback under CO2-induced climate change if CO2 fertilization effects are as large as suggested by current models.
Abstract: A linear relationship between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO2 to tropical temperature anomalies provides a tight constraint on the sensitivity of tropical land carbon to climate change. In response to climate change, tropical forests may release vast amounts of carbon, accelerating the pace of further climate change. Or they may not: research to date has been conflicting and controversial. Peter Cox and colleagues now use the response of the tropical land carbon cycle to interannual climate variability to constrain the likely future response. They find that the tropics will emit 53 ± 17 gigatonnes of carbon per degree of warming, a much more muted response that suggested in previous work. The release of carbon from tropical forests may exacerbate future climate change1, but the magnitude of the effect in climate models remains uncertain2. Coupled climate–carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO2 concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures3. At present, the balance between these effects varies markedly among coupled climate–carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia4,5 and variations in the responses of alternative vegetation models to warming6. Here we identify an emergent linear relationship, across an ensemble of models7, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO2 to tropical temperature anomalies8. Combined with contemporary observations of atmospheric CO2 concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate–carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO2-induced climate change if CO2 fertilization effects are as large as suggested by current models9. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols10 or increases in other greenhouse gases11.

614 citations


Authors

Showing all 16338 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
John C. Morris1831441168413
David W. Johnson1602714140778
Kevin J. Gaston15075085635
Andrew T. Hattersley146768106949
Timothy M. Frayling133500100344
Joel N. Hirschhorn133431101061
Jonathan D. G. Jones12941780908
Graeme I. Bell12753161011
Mark D. Griffiths124123861335
Tao Zhang123277283866
Brinick Simmons12269169350
Edzard Ernst120132655266
Michael Stumvoll11965569891
Peter McGuffin11762462968
Network Information
Related Institutions (5)
University of Birmingham
115.3K papers, 4.3M citations

96% related

University of Manchester
168K papers, 6.4M citations

96% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of Bristol
113.1K papers, 4.9M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023295
2022782
20214,412
20204,192
20193,721
20183,385