scispace - formally typeset
Search or ask a question
Institution

University of Florence

EducationFlorence, Toscana, Italy
About: University of Florence is a education organization based out in Florence, Toscana, Italy. It is known for research contribution in the topics: Population & Carbonic anhydrase. The organization has 27292 authors who have published 79599 publications receiving 2341684 citations. The organization is also known as: Università degli studi di Firenze & Universita degli studi di Firenze.


Papers
More filters
Journal ArticleDOI
TL;DR: The applications of exchange coupled bi-magnetic hard/soft and soft/hard ferromagnetic core/shell nanoparticles are reviewed in this paper, where the main synthesis approaches and the structural-morphological characterization are presented.
Abstract: The applications of exchange coupled bi-magnetic hard/soft and soft/hard ferromagnetic core/shell nanoparticles are reviewed. After a brief description of the main synthesis approaches and the core/shell structural-morphological characterization, the basic static and dynamic magnetic properties are presented. Five different types of perspective applications, based on diverse patents and research articles, are described: permanent magnets, recording media, microwave absorption, biomedical applications and other applications. Both the advantages of the core/shell morphology and some of the remaining challenges are discussed.

349 citations

Journal ArticleDOI
TL;DR: It is suggested that the unanticipated key role of the vacuole in the ROS homeostasis might be mediated by flavonoid, a secondary ROS-scavenging system in plants exposed to severe/prolonged stress conditions.
Abstract: There is a growing body of evidence that flavonoids do not primarily function as UV-B screening pigments in photoprotection. Recent findings support the idea that excess light stress, irrespective of the relative proportions of the solar wavebands reaching the leaf surface, up-regulates the biosynthesis of dihydroxy B-ring-substituted flavonoid glycosides, as a consequence of and aimed at countering the generation of ROS. Intriguingly, the very conditions that lead to the inactivation of antioxidant enzymes can also up-regulate the biosynthesis of antioxidant flavonoids, which suggests flavonoids constituting a secondary ROS-scavenging system in plants exposed to severe/prolonged stress conditions. H2O2 may diffuse out of the chloroplast at considerable rates and be transported to the vacuole, the storing site for flavonoids, by tonoplast intrinsic proteins, under severe excess light conditions. We suggest that the unanticipated key role of the vacuole in the ROS homeostasis might be mediated by flavonoids.

348 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the possibility that a low-energy component of cosmic rays, not directly measurable from the Earth, can account for the discrepancy between the ionization rate measured in diffuse and dense interstellar clouds.
Abstract: Context Low-energy cosmic rays are a fundamental source of ionization for molecular clouds, influencing their chemical, thermal, and dynamical evolution Aims The purpose of this work is to explore the possibility that a low-energy component of cosmic rays, not directly measurable from the Earth, can account for the discrepancy between the ionization rate measured in diffuse and dense interstellar clouds Methods We collected the most recent experimental and theoretical data on the cross sections for the production of H + and He + by electron and proton impact and discuss the available constraints on the cosmic-ray fluxes in the local interstellar medium Starting from different extrapolations at low energies of the demodulated cosmic-ray proton and electron spectra, we computed the propagated spectra in molecular clouds in the continuous slowing-down approximation taking all the relevant energy loss processes into account Results The theoretical value of the cosmic-ray ionization rate as a function of the column density of traversed matter agrees with the observational data only if the flux of either cosmic-ray electrons or of protons increases at low energies The most successful models are characterized by a significant (or even dominant) contribution of the electron component to the ionization rate, in agreement with previous suggestions However, the large spread of cosmic-ray ionization rates inferred from chemical models of molecular cloud cores remains to be explained Conclusions Available data combined with simple propagation models support the existence of a low-energy component (below ∼100 MeV) of cosmic-ray electrons or protons responsible for the ionization of molecular cloud cores and dense protostellar envelopes

348 citations

Journal ArticleDOI
13 Oct 2011-Blood
TL;DR: Recommendations represent the state-of-the-art management of CD30(+) LPDs and include definitions for clinical endpoints as well as response criteria for future clinical trials in CD30 (+) L PDs.

347 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2298 moreInstitutions (160)
TL;DR: In this article, a search for invisible decays of a Higgs boson via vector boson fusion is performed using proton-proton collision data collected with the CMS detector at the LHC in 2016 at a center-of-mass energy root s = 13 TeV, corresponding to an integrated luminosity of 35.9fb(-1).

347 citations


Authors

Showing all 27699 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
D. M. Strom1763167194314
Gregory Y.H. Lip1693159171742
Christopher M. Dobson1501008105475
Dirk Inzé14964774468
Thomas Hebbeker1481984114004
Marco Zanetti1451439104610
Richard B. Devereux144962116403
Gunther Roland1411471100681
Markus Klute1391447104196
Tariq Aziz138164696586
Guido Tonelli138145897248
Giorgio Trinchieri13843378028
Christof Roland137130896632
Christoph Paus1371585100801
Network Information
Related Institutions (5)
Sapienza University of Rome
155.4K papers, 4.3M citations

98% related

University of Padua
114.8K papers, 3.6M citations

97% related

University of Milan
139.7K papers, 4.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Turin
77.9K papers, 2.4M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023244
2022631
20215,298
20205,251
20194,652
20184,147