scispace - formally typeset
Search or ask a question
Institution

University of Florence

EducationFlorence, Toscana, Italy
About: University of Florence is a education organization based out in Florence, Toscana, Italy. It is known for research contribution in the topics: Population & Carbonic anhydrase. The organization has 27292 authors who have published 79599 publications receiving 2341684 citations. The organization is also known as: Università degli studi di Firenze & Universita degli studi di Firenze.


Papers
More filters
Journal ArticleDOI
TL;DR: Despite the instability of liposome-association of 3-oxo-C(12)-homoserine lactone and resveratrol, intravenous administration of these compounds inhibited tumor growth for approximately 70% in a murine tumor model, showing that simple solubilization can have important therapeutic benefits.

283 citations

Journal ArticleDOI
TL;DR: This work introduces a new type of lens that exploits multiple scattering of light to generate a scanning nanosized optical focus and is the first lens that provides a resolution better than 100 nm at visible wavelengths.
Abstract: The smallest structures that conventional lenses are able to optically resolve are of the order of 200 nm. We introduce a new type of lens that exploits multiple scattering of light to generate a scanning nanosized optical focus. With an experimental realization of this lens in gallium phosphide we imaged gold nanoparticles at 97 nm optical resolution. Our work is the first lens that provides a resolution better than 100 nm at visible wavelengths.

283 citations

Journal ArticleDOI
TL;DR: This article deals with the solution structure determination of paramagnetic metalloproteins by NMR spectroscopy and gives hints for the optimization of experiments with respect to each particular metal ion, with the aim of also providing a handy tool for nonspecialists.
Abstract: This article deals with the solution structure determination of paramagnetic metalloproteins by NMR spectroscopy. These proteins were believed not to be suitable for NMR investigations for structure determination until a decade ago, but eventually novel experiments and software protocols were developed, with the aim of making the approach suitable for the goal and as user-friendly and safe as possible. In the article, we also give hints for the optimization of experiments with respect to each particular metal ion, with the aim of also providing a handy tool for nonspecialists. Finally, a section is dedicated to the significant progress made on 13C direct detection, which reduces the negative effects of paramagnetism and may constitute a new chapter in the whole field of NMR spectroscopy.

283 citations

Journal ArticleDOI
TL;DR: The result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.
Abstract: Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.

282 citations

Journal ArticleDOI
TL;DR: Following the most stringent current standards for validation of ancient DNA sequences, it is shown that the mtDNAs of two anatomically modern Homo sapiens sapiens individuals of the Cro-Magnon type dated at about 23 and 25 thousand years ago fall well within the range of variation of today's humans, but differ sharply from the available sequences of the chronologically closer Neandertals.
Abstract: During the late Pleistocene, early anatomically modern humans coexisted in Europe with the anatomically archaic Neandertals for some thousand years. Under the recent variants of the multire- gional model of human evolution, modern and archaic forms were different but related populations within a single evolving species, and both have contributed to the gene pool of current humans. Conversely, the Out-of-Africa model considers the transition be- tween Neandertals and anatomically modern humans as the result of a demographic replacement, and hence it predicts a genetic discontinuity between them. Following the most stringent current standards for validation of ancient DNA sequences, we typed the mtDNA hypervariable region I of two anatomically modern Homo sapiens sapiens individuals of the Cro-Magnon type dated at about 23 and 25 thousand years ago. Here we show that the mtDNAs of these individuals fall well within the range of variation of today's humans, but differ sharply from the available sequences of the chronologically closer Neandertals. This discontinuity is difficult to reconcile with the hypothesis that both Neandertals and early anatomically modern humans contributed to the current European gene pool.

282 citations


Authors

Showing all 27699 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
D. M. Strom1763167194314
Gregory Y.H. Lip1693159171742
Christopher M. Dobson1501008105475
Dirk Inzé14964774468
Thomas Hebbeker1481984114004
Marco Zanetti1451439104610
Richard B. Devereux144962116403
Gunther Roland1411471100681
Markus Klute1391447104196
Tariq Aziz138164696586
Guido Tonelli138145897248
Giorgio Trinchieri13843378028
Christof Roland137130896632
Christoph Paus1371585100801
Network Information
Related Institutions (5)
Sapienza University of Rome
155.4K papers, 4.3M citations

98% related

University of Padua
114.8K papers, 3.6M citations

97% related

University of Milan
139.7K papers, 4.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Turin
77.9K papers, 2.4M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023244
2022631
20215,298
20205,251
20194,652
20184,147