scispace - formally typeset
Search or ask a question
Institution

University of Florida

EducationGainesville, Florida, United States
About: University of Florida is a education organization based out in Gainesville, Florida, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 90112 authors who have published 200011 publications receiving 7130576 citations. The organization is also known as: UF & University of the State of Florida.


Papers
More filters
Journal ArticleDOI
TL;DR: These revised definitions of invasive fungal disease are intended to advance clinical and epidemiological research and may serve as a useful model for defining other infections in high-risk patients.
Abstract: BACKGROUND: Invasive fungal diseases are important causes of morbidity and mortality. Clarity and uniformity in defining these infections are important factors in improving the quality of clinical studies. A standard set of definitions strengthens the consistency and reproducibility of such studies. METHODS: After the introduction of the original European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group definitions, advances in diagnostic technology and the recognition of areas in need of improvement led to a revision of this document. The revision process started with a meeting of participants in 2003, to decide on the process and to draft the proposal. This was followed by several rounds of consultation until a final draft was approved in 2005. This was made available for 6 months to allow public comment, and then the manuscript was prepared and approved. RESULTS: The revised definitions retain the original classifications of "proven," "probable," and "possible" invasive fungal disease, but the definition of "probable" has been expanded, whereas the scope of the category "possible" has been diminished. The category of proven invasive fungal disease can apply to any patient, regardless of whether the patient is immunocompromised, whereas the probable and possible categories are proposed for immunocompromised patients only. CONCLUSIONS: These revised definitions of invasive fungal disease are intended to advance clinical and epidemiological research and may serve as a useful model for defining other infections in high-risk patients.

4,389 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues.
Abstract: Ceramics used for the repair and reconstruction of diseased or damaged parts of the musculo-skeletal system, termed bioceramics, may be bioinert (alumina, zirconia), resorbable (tricalcium phosphate), bioactive (hydroxyapatite, bioactive glasses, and glass-ceramics), or porous for tissue ingrowth (hydroxyapatite-coated metals, alumina). Applications include replacements for hips, knees, teeth, tendons, and ligaments and repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jaw bone, spinal fusion, and bone fillers after tumor surgery. Carbon coatings are thromboresistant and are used for prosthetic heart valves. The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues. Composites are being developed with high toughness and elastic modulus match with bone. Therapeutic treatment of cancer has been achieved by localized delivery of radioactive isotopes via glass beads. Development of standard test methods for prediction of long-term (20-year) mechanical reliability under load is still needed.

4,292 citations

Journal ArticleDOI
TL;DR: This framework is used to discuss why the metacommunity concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples.
Abstract: The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch-dynamic view, the species-sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio-temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.

4,266 citations

Book
01 Jan 1989
TL;DR: Fundamentals of Database Systems combines clear explanations of theory and design, broad coverage of models and real systems, and excellent examples with up-to-date introductions to modern database technologies.
Abstract: From the Publisher: Fundamentals of Database Systems combines clear explanations of theory and design, broad coverage of models and real systems, and excellent examples with up-to-date introductions to modern database technologies. This edition is completely revised and updated, and reflects the latest trends in technological and application development. Professors Elmasri and Navathe focus on the relational model and include coverage of recent object-oriented developments. They also address advanced modeling and system enhancements in the areas of active databases, temporal and spatial databases, and multimedia information systems. This edition also surveys the latest application areas of data warehousing, data mining, web databases, digital libraries, GIS, and genome databases. New to the Third Edition Reorganized material on data modeling to clearly separate entity relationship modeling, extended entity relationship modeling, and object-oriented modeling Expanded coverage of the object-oriented and object/relational approach to data management, including ODMG and SQL3 Uses examples from real database systems including OracleTM and Microsoft AccessAE Includes discussion of decision support applications of data warehousing and data mining, as well as emerging technologies of web databases, multimedia, and mobile databases Covers advanced modeling in the areas of active, temporal, and spatial databases Provides coverage of issues of physical database tuning Discusses current database application areas of GIS, genome, and digital libraries

4,242 citations


Authors

Showing all 90810 results

NameH-indexPapersCitations
Fred H. Gage216967185732
David Miller2032573204840
Rob Knight2011061253207
Hongjie Dai197570182579
Ronald Klein1941305149140
Dennis W. Dickson1911243148488
Jing Wang1844046202769
David A. Weitz1781038114182
Kenneth S. Kendler1771327142251
Pulickel M. Ajayan1761223136241
Feng Zhang1721278181865
J. N. Butler1722525175561
Yang Gao1682047146301
Guenakh Mitselmakher1651951164435
Yang Yang1642704144071
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

98% related

Cornell University
235.5K papers, 12.2M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Duke University
200.3K papers, 10.7M citations

95% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023254
20221,069
202110,996
202010,658
20199,775
20188,768