scispace - formally typeset
Search or ask a question
Institution

University of Georgia

EducationAthens, Georgia, United States
About: University of Georgia is a education organization based out in Athens, Georgia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 41934 authors who have published 93622 publications receiving 3713212 citations. The organization is also known as: UGA & Franklin College.
Topics: Population, Poison control, Gene, Genome, Virus


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, several indices of item homogeneity derived from the model of common factor analysis are offered as alternatives to the coefficient alpha as a measure of internal consistency and homogeneity.
Abstract: Confusion in the literature between the concepts of internal consistency and homogeneity has led to a misuse of coefficient alpha as an index of item homogeneity. Coefficient alpha is actually a complexly determined test statistic, item homogeneity only being one influence on its magnitude. The related statistic, the average intercorrelation, has similar difficulties. Several indices of item homogeneity derived from the model of common factor analysis are offered as alternatives.

484 citations

Journal ArticleDOI
01 Jul 2010-Nature
TL;DR: The argument that rejuvenation of ecosystem function requires restoration of species evenness, rather than just richness, is strengthened, as organic farming potentially offers a means of returning functional evenness to ecosystems.
Abstract: Declining species number (richness) harms ecosystems, and conservation efforts have largely focused on conserving or restoring particular rare species. However, greater disparity in species relative abundances (evenness) might also do ecological harm, which could only be reversed by altering the densities of many species at once. A new survey of organic and conventionally managed potato fields shows that species evenness is greater under organic management. Replicating these levels of evenness in a field trial shows that the evenness of natural enemies found in organic fields promotes pest control and increases crop biomass. In organic crops many beneficial species (that eat pest insects) are equally common, which in potatoes leads to fewer pests and larger plants. A survey of organic and conventional potato fields shows that species evenness is greater under organic management. Replicating these levels of evenness in a field trial shows that the evenness of natural enemies found in organic fields promotes pest control and increases crop biomass. This is independent of the identity of the dominant enemy species, so is a result of evenness itself. Human activity can degrade ecosystem function by reducing species number (richness)1,2,3,4 and by skewing the relative abundance of species (evenness)5,6,7. Conservation efforts often focus on restoring or maintaining species number8,9, reflecting the well-known impacts of richness on many ecological processes1,2,3,4. In contrast, the ecological effects of disrupted evenness have received far less attention7, and developing strategies for restoring evenness remains a conceptual challenge7. In farmlands, agricultural pest-management practices often lead to altered food web structure and communities dominated by a few common species, which together contribute to pest outbreaks6,7,10,11. Here we show that organic farming methods mitigate this ecological damage by promoting evenness among natural enemies. In field enclosures, very even communities of predator and pathogen biological control agents, typical of organic farms, exerted the strongest pest control and yielded the largest plants. In contrast, pest densities were high and plant biomass was low when enemy evenness was disrupted, as is typical under conventional management. Our results were independent of the numerically dominant predator or pathogen species, and so resulted from evenness itself. Moreover, evenness effects among natural enemy groups were independent and complementary. Our results strengthen the argument that rejuvenation of ecosystem function requires restoration of species evenness, rather than just richness. Organic farming potentially offers a means of returning functional evenness to ecosystems.

484 citations

Journal ArticleDOI
TL;DR: The KInetic Database for Astrochemistry (KIDA) as mentioned in this paper is a database of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible.
Abstract: We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.

483 citations

Journal ArticleDOI
TL;DR: The implementation and architecture of the METEOR-S Web Service Discovery Infrastructure is described, which leverages peer-to-peer computing as a scalable solution and an ontology-based approach to organize registries into domains, enabling domain based classification of all Web services.
Abstract: Web services are the new paradigm for distributed computing. They have much to offer towards interoperability of applications and integration of large scale distributed systems. To make Web services accessible to users, service providers use Web service registries to publish them. Current infrastructure of registries requires replication of all Web service publications in all Universal Business Registries. Large growth in number of Web services as well as the growth in the number of registries would make this replication impractical. In addition, the current Web service discovery mechanism is inefficient, as it does not support discovery based on the capabilities of the services, leading to a lot of irrelevant matches. Semantic discovery or matching of services is a promising approach to address this challenge. In this paper, we present a scalable, high performance environment for Web service publication and discovery among multiple registries. This work uses an ontology-based approach to organize registries into domains, enabling domain based classification of all Web services. Each of these registries supports semantic publication and discovery of Web services. We believe that the semantic approach suggested in this paper will significantly improve Web service publication and discovery involving a large number of registries. This paper describes the implementation and architecture of the METEOR-S Web Service Discovery Infrastructure, which leverages peer-to-peer computing as a scalable solution.

483 citations

Journal ArticleDOI
TL;DR: An integrated summary of the efforts to characterize the distribution of ILPs in insects and to define this pathway and its functions in Drosophila is offered and a few considerations for future studies of ILP endocrinology in insects are offered.
Abstract: ▪ Abstract Insulin-like peptides (ILPs) exist in insects and are encoded by multigene families that are expressed in the brain and other tissues. Upon secretion, these peptides likely serve as hormones, neurotransmitters, and growth factors, but to date, few direct functions have been demonstrated. In Drosophila melanogaster, molecular genetic studies have revealed elements of a conserved insulin signaling pathway, and as in other animal models, it appears to play a key role in metabolism, growth, reproduction, and aging. This review offers (a) an integrated summary of the efforts to characterize the distribution of ILPs in insects and to define this pathway and its functions in Drosophila and (b) a few considerations for future studies of ILP endocrinology in insects.

482 citations


Authors

Showing all 42268 results

NameH-indexPapersCitations
Rob Knight2011061253207
Feng Zhang1721278181865
Zhenan Bao169865106571
Carl W. Cotman165809105323
Yoshio Bando147123480883
Mark Raymond Adams1471187135038
Han Zhang13097058863
Dmitri Golberg129102461788
Godfrey D. Pearlson12874058845
Douglas E. Soltis12761267161
Richard A. Dixon12660371424
Ajit Varki12454258772
Keith A. Johnson12079851034
Gustavo E. Scuseria12065895195
Julian I. Schroeder12031550323
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022542
20214,670
20204,504
20194,098
20183,994