scispace - formally typeset
Search or ask a question
Institution

University of Georgia

EducationAthens, Georgia, United States
About: University of Georgia is a education organization based out in Athens, Georgia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 41934 authors who have published 93622 publications receiving 3713212 citations. The organization is also known as: UGA & Franklin College.
Topics: Population, Poison control, Gene, Genome, Virus


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed and tested a sequential extraction procedure (SEP) for As by choosing extraction reagents commonly used for sequential extraction of metals, Se and P, including NH 4 NO 3, NaOAc, NH 2 OH·HCl, EDTA, NH 4 OH and NH 4 F, were shown to either have only low extraction efficiency for As, or to be insufficiently selective or specific for the phases targeted.

1,137 citations

Journal ArticleDOI
TL;DR: The NextGen Model Atmosphere Grid for low mass stars for effective temperatures larger than 3.5°C was presented in this article, with the same basic model assumptions and input physics as the VLMS part of the NextGen grid so that the complete grid can be used.
Abstract: We present our NextGen Model Atmosphere grid for low mass stars for effective temperatures larger than $3000\K$. These LTE models are calculated with the same basic model assumptions and input physics as the VLMS part of the NextGen grid so that the complete grid can be used, e.g., for consistent stellar evolution calculations and for internally consistent analysis of cool star spectra. This grid is also the starting point for a large grid of detailed NLTE model atmospheres for dwarfs and giants (Hauschildt et al, in preparation). The models were calculated from $3000\K$ to $10000\K$ (in steps of $200\K$) for $3.5 \le \logg \le 5.5$ (in steps of 0.5) and metallicities of $-4.0 \le \mh \le 0.0$. We discuss the results of the model calculations and compare our results to the Kurucz 1994 grid. Some comparisons to standard stars like Vega and the Sun are presented and compared with detailed NLTE calculations.

1,129 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: T careful thought about the desired characteristics of these systems is warranted before purchasing or using any of them, and the major characteristics of each commercially available platform are summarized.
Abstract: The diversity of available 2 nd and 3 rd generation DNA sequencing platforms is increasing rapidly. Costs for these systems range from $10 ⁄Mb for 454 and some Ion Torrent chips). In terms of cost per nonmultiplexed sample and instrument run time, the Pacific Biosciences and Ion Torrent platforms excel, with the 454 GS Junior and Illumina MiSeq also notable in this regard. All platforms allow multiplexing of samples, but details of library preparation, experimental design and data analysis can constrain the options. The wide range of characteristics among available platforms provides opportunities both to conduct groundbreaking studies and to waste money on scales that were previously infeasible. Thus, careful thought about the desired characteristics of these systems is warranted before purchasing or using any of them. Updated information from this guide will be maintained at: http://dna.uga.edu/ and http://tomato.biol.trinity.edu/blog/.

1,122 citations

Journal ArticleDOI
Jörg Kämper1, Regine Kahmann1, Michael Bölker2, Li-Jun Ma3, Thomas Brefort1, Barry J. Saville4, Barry J. Saville5, Flora Banuett6, James W. Kronstad7, Scott E. Gold8, Olaf Müller1, Michael H. Perlin9, Han A. B. Wösten10, Ronald P. de Vries10, Jose Ruiz-Herrera, Cristina G. Reynaga-Peña, Karen M. Snetselaar11, Michael P. McCann11, José Pérez-Martín12, Michael Feldbrügge1, Christoph W. Basse1, Gero Steinberg1, José I. Ibeas12, William K. Holloman13, Plinio Guzmán14, Mark L. Farman15, Jason E. Stajich16, Rafael Sentandreu17, Juan Manuel González-Prieto, John C. Kennell18, Lazaro Molina1, Jan Schirawski1, Artemio Mendoza-Mendoza1, Doris Greilinger1, Karin Münch1, Nicole Rössel1, Mario Scherer1, Miroslav Vranes1, Oliver Ladendorf1, Volker Vincon1, Uta Fuchs1, Björn Sandrock2, Shaowu Meng5, Eric C.H. Ho5, Matt J. Cahill5, Kylie J. Boyce7, Jana Klose7, Steven J. Klosterman8, Heine J. Deelstra10, Lucila Ortiz-Castellanos, Weixi Li15, Patricia Sánchez-Alonso14, Peter Schreier19, Isolde Häuser-Hahn19, Martin Vaupel19, Edda Koopmann19, Gabi Friedrich19, Hartmut Voss, Thomas Schlüter, Jonathan Margolis20, Darren Mark Platt20, Candace Swimmer20, Andreas Gnirke20, Feng Chen20, Valentina Vysotskaia20, Gertrud Mannhaupt1, Ulrich Güldener, Martin Münsterkötter, Dirk Haase, Matthias Oesterheld, Hans-Werner Mewes21, Evan Mauceli3, David DeCaprio3, Claire M. Wade3, Jonathan Butler3, Sarah Young3, David B. Jaffe3, Sarah E. Calvo3, Chad Nusbaum3, James E. Galagan3, Bruce W. Birren3 
02 Nov 2006-Nature
TL;DR: The discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi.
Abstract: Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.

1,120 citations


Authors

Showing all 42268 results

NameH-indexPapersCitations
Rob Knight2011061253207
Feng Zhang1721278181865
Zhenan Bao169865106571
Carl W. Cotman165809105323
Yoshio Bando147123480883
Mark Raymond Adams1471187135038
Han Zhang13097058863
Dmitri Golberg129102461788
Godfrey D. Pearlson12874058845
Douglas E. Soltis12761267161
Richard A. Dixon12660371424
Ajit Varki12454258772
Keith A. Johnson12079851034
Gustavo E. Scuseria12065895195
Julian I. Schroeder12031550323
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022542
20214,670
20204,504
20194,098
20183,994