scispace - formally typeset
Search or ask a question
Institution

University of Gothenburg

EducationGothenburg, Sweden
About: University of Gothenburg is a education organization based out in Gothenburg, Sweden. It is known for research contribution in the topics: Population & Poison control. The organization has 23855 authors who have published 65241 publications receiving 2606327 citations. The organization is also known as: Göteborg University & Gothenburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: This review outlines the growing evidence for unique properties and pathways of CT afferents and suggests that CT fiber activation may also have a role in pain inhibition.

422 citations

Journal ArticleDOI
TL;DR: This review situates cutaneous perception within a social neuroscience framework by discussing evidence for considering touch (and to some extent pain) as a channel for social information and exploring its wider implications for the exchange of social information.
Abstract: In general, social neuroscience research tends to focus on visual and auditory channels as routes for social information. However, because the skin is the site of events and processes crucial to the way we think about, feel about, and interact with one another, touch can mediate social perceptions in various ways. This review situates cutaneous perception within a social neuroscience framework by discussing evidence for considering touch (and to some extent pain) as a channel for social information. Social information conveys features of individuals or their interactions that have potential bearing on future interactions, and attendant mental and emotional states. Here, we discuss evidence for an affective dimension of touch and explore its wider implications for the exchange of social information. We consider three important roles for this affective dimension of the cutaneous senses in the transmission and processing of social information: first, through affiliative behavior and communication; second, via affective processing in skin–brain pathways; and third, as a basis for intersubjective representation.

422 citations

Journal Article
TL;DR: Generally, oral implants are introduced clinically without adequate clinical documentation, and proper long-term reports have been published for only one surface, Tioblast.
Abstract: Purpose This article reviews clinical knowledge of selected oral implant surfaces. Materials and methods The surfaces most commonly used in clinical practice, marketed by the five largest oral implant companies, are identified; their clinical documentation was scrutinized following a strict protocol. Experimental knowledge of the surfaces is briefly summarized. Retrospective, prospective, and comparative clinical studies were analyzed separately, as were studies of implants in conjunction with bone grafts. Results TiUnite anodized surfaces are clinically documented in 1- to 2-year follow-up studies at best, with failures at about 3%. Sandblasted and acid-etched SLA surfaces are documented with good clinical results for up to 3 years. Osseotite dual acid-etched implants are documented with good clinical results for up to 5 years. Frialit-2 sandblasted and etched implants are positively documented for about 3 years in one study only. The Tioblast implant is the only design documented for survival over 10 years of follow-up and success over 7 years of follow-up. Conclusion Generally, oral implants are introduced clinically without adequate clinical documentation. Implant companies initiate clinical documentation after product launch. The standards of clinical reporting have improved over the years. Proper long-term reports have been published for only one surface, Tioblast.

421 citations

Journal ArticleDOI
TL;DR: ReactiveAstrocytes have a protective role in brain ischemia, and the absence of astrocyte IFs is linked to changes in glutamate transport, ETBR-mediated control of gap junctions, and PAI-1 expression.
Abstract: Reactive astrocytes are thought to protect the penumbra during brain ischemia, but direct evidence has been lacking due to the absence of suitable experimental models. Previously, we generated mice deficient in two intermediate filament (IF) proteins, glial fibrillary acidic protein (GFAP) and vimentin, whose upregulation is the hallmark of reactive astrocytes. GFAP(-/-)Vim(-/-) mice exhibit attenuated posttraumatic reactive gliosis, improved integration of neural grafts, and posttraumatic regeneration. Seven days after middle cerebral artery (MCA) transection, infarct volume was 210 to 350% higher in GFAP(-/-)Vim(-/-) than in wild-type (WT) mice; GFAP(-/-), Vim(-/-) and WT mice had the same infarct volume. Endothelin B receptor (ET(B)R) immunoreactivity was strong on cultured astrocytes and reactive astrocytes around infarct in WT mice but undetectable in GFAP(-/-)Vim(-/-) astrocytes. In WT astrocytes, ET(B)R colocalized extensively with bundles of IFs. GFAP(-/-)Vim(-/-) astrocytes showed attenuated endothelin-3-induced blockage of gap junctions. Total and glutamate transporter-1 (GLT-1)-mediated glutamate transport was lower in GFAP(-/-)Vim(-/-) than in WT mice. DNA array analysis and quantitative real-time PCR showed downregulation of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of tissue plasminogen activator. Thus, reactive astrocytes have a protective role in brain ischemia, and the absence of astrocyte IFs is linked to changes in glutamate transport, ET(B)R-mediated control of gap junctions, and PAI-1 expression.

421 citations

Journal ArticleDOI
07 Sep 2006-Nature
TL;DR: It is demonstrated that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas, indicating that the understanding of the complexity of the marine nitrogen cycle is far from complete.
Abstract: Several foraminiferal protozoa species grow in anoxic zones in marine sediment, but the type of anaerobic respiration that sustains them was not known. These organisms have now been found to accumulate nitrate intracellularly at concentrations more than 500 times the environmental values. The nitrate substitutes for oxygen in these anoxic habitats. The large amounts of nitrate that accumulate may even allow them to 'hold their breath' for more than a month. Denitrification, the biological conversion of nitrate to nitrogen, was believed to be restricted to bacteria and archaea. It has now been shown that highly abundant benthic foraminifers are also capable of denitrification, suggesting that much remains to be learned about the global nitrogen cycle. Benthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats1, but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas. The amounts of nitrate detected are estimated to be sufficient to support respiration for over a month. In a Swedish fjord sediment where G. pseudospinescens is the dominant foraminifer, the intracellular nitrate pool in this species accounted for 20% of the large, cell-bound, nitrate pool present in an oxygen-free zone. Similarly high nitrate concentrations were also detected in foraminifera Nonionella cf. stella and a Stainforthia species, the two dominant benthic taxa occurring within the oxygen minimum zone of the continental shelf off Chile. Given the high abundance of foraminifera in anoxic marine environments1,2,3, these new findings suggest that foraminifera may play an important role in global nitrogen cycling and indicate that our understanding of the complexity of the marine nitrogen cycle is far from complete.

420 citations


Authors

Showing all 24120 results

NameH-indexPapersCitations
Peter J. Barnes1941530166618
Luigi Ferrucci1931601181199
Richard H. Friend1691182140032
Napoleone Ferrara167494140647
Timothy A. Springer167669122421
Anders Björklund16576984268
Hua Zhang1631503116769
Kaj Blennow1601845116237
Leif Groop158919136056
Tomas Hökfelt158103395979
Johan G. Eriksson1561257123325
Naveed Sattar1551326116368
Paul Elliott153773103839
Claude Bouchard1531076115307
Hakon Hakonarson152968101604
Network Information
Related Institutions (5)
Lund University
124.6K papers, 5M citations

96% related

University of Copenhagen
149.7K papers, 5.9M citations

96% related

Karolinska Institutet
121.1K papers, 6M citations

94% related

Utrecht University
139.3K papers, 6.2M citations

92% related

University of Amsterdam
140.8K papers, 5.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023145
2022539
20215,065
20204,657
20194,254
20183,850