scispace - formally typeset
Search or ask a question
Institution

University of Gothenburg

EducationGothenburg, Sweden
About: University of Gothenburg is a education organization based out in Gothenburg, Sweden. It is known for research contribution in the topics: Population & Health care. The organization has 23855 authors who have published 65241 publications receiving 2606327 citations. The organization is also known as: Göteborg University & Gothenburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: A model in which mesangial cells originate from PDGF-Rbeta-positive progenitors surrounding the developing glomerular afferent and efferent arterioles, and are co-recruited in response toPDGF-B during angiogenic formation of theglomerular capillary tuft is proposed.
Abstract: Kidney glomerulus mesangial cells fail to develop in mice carrying targeted null mutations in the platelet-derived growth factor (PDGF)-B or PDGF-Rbeta genes. We have examined the pattern of expression of these genes and smooth muscle markers during kidney development, to address the possible mechanisms underlying the mutant phenotypes. In wild-type embryos, PDGF-B was expressed in vascular endothelial cells, particularly in capillary endothelial cells in the developing glomeruli, whereas PDGF-Rbeta was found in perivascular mesenchymal cells in the developing renal cortex. In the course of glomerular development, small groups of PDGF-Rbeta and desmin-expressing cells collected in the 'S'-shaped and early cup-shaped vesicles, and at later stages such cells were found in the glomerular mesangium. In PDGF-B or -Rbeta null embryos, some PDGF-Rbeta/desmin or desmin-positive cells, respectively, were seen in early cup-shaped vesicles, but fewer than in the wild type, and further development of the mesangium failed. In mouse chimeras composed of PDGF-Rbeta +/+ and -/- cells, the Rbeta-/- cells failed to populate the glomerular mesangium. Our results show that while the mesangial cell lineage is specified independently of PDGF-B/Rbeta, these molecules provide critical permissive signals in mesangial cell development. We propose a model in which mesangial cells originate from PDGF-Rbeta-positive progenitors surrounding the developing glomerular afferent and efferent arterioles, and are co-recruited in response to PDGF-B during angiogenic formation of the glomerular capillary tuft.

378 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the importance and current knowledge of this often overlooked NO3− consumption process within the terrestrial N cycle is presented, which strongly encourages considering DNRA as a relevant process in future soil N cycling investigations.
Abstract: . The nitrogen (N) cycle contains two different processes of dissimilatory nitrate (NO3−) reduction, denitrification and dissimilatory NO3− reduction to ammonium (DNRA). While there is general agreement that the denitrification process takes place in many soils, the occurrence and importance of DNRA is generally not considered. Two approaches have been used to investigate DNRA in soil, (1) microbiological techniques to identify soil microorganisms capable of DNRA and (2) 15N tracing to elucidate the occurrence of DNRA and to quantify gross DNRA rates. There is evidence that many soil bacteria and fungi have the ability to perform DNRA. Redox status and C/NO3− ratio have been identified as the most important factors regulating DNRA in soil. 15N tracing studies have shown that gross DNRA rates can be a significant or even a dominant NO3− consumption process in some ecosystems. Moreover, a link between heterotrophic nitrification and DNRA provides an alternative pathway of ammonium (NH4+) production to mineralisation. Numerical 15N tracing models are particularly useful when investigating DNRA in the context of other N cycling processes. The results of correlation and regression analyses show that highest gross DNRA rates can be expected in soils with high organic matter content in humid regions, while its relative importance is higher in temperate climates. With this review we summarise the importance and current knowledge of this often overlooked NO3− consumption process within the terrestrial N cycle. We strongly encourage considering DNRA as a relevant process in future soil N cycling investigations.

378 citations

Journal ArticleDOI
TL;DR: It is argued that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation and proposes a road map for future speciation research.
Abstract: Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation.

378 citations

Journal ArticleDOI
22 Jul 2019-Nature
TL;DR: It is demonstrated that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS, and it is suggested that environmentally driven microbiome–brain interactions may modulate ALS in mice.
Abstract: Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.

378 citations

Journal ArticleDOI
TL;DR: The results show that murine epithelial cell-specific Btnl proteins can form intrafamily heterocomplexes and suggest that the interaction between BtNL proteins and IELs regulates the expansion of Iels in the intestinal mucosa.
Abstract: To date, few molecular conduits mediating the cross-talk between intestinal epithelial cells and intraepithelial lymphocytes (IELs) have been described. We recently showed that Butyrophilin-like (Btnl) 1 can attenuate the epithelial response to activated IELs, resulting in reduced production of pro-inflammatory mediators such as IL-6 and CXCL1. We here report that like Btnl1, murine Btnl6 expression is primarily confined to the intestinal epithelium. Although Btnl1 can exist in a cell surface-expressed homomeric form, we found that it additionally forms heteromeric complexes with Btnl6, and that the engagement of Btnl1 is a prerequisite for surface expression of Btnl6 on intestinal epithelial cells. In an IEL-epithelial cell co-culture system, enforced epithelial cell expression of Btnl1 significantly enhanced the proliferation of IELs in the absence of exogenous activation. The effect on proliferation was dependent on the presence of IL-2 or IL-15 and restricted to IELs upregulating CD25. In the gamma delta (gd) T-cell subset, the Btnl1-Btnl6 complex, but not Btnl1, specifically elevated the proliferation of IELs bearing the Vg7Vd4 receptor. Thus, our results show that murine epithelial cell-specific Btnl proteins can form intrafamily heterocomplexes, and suggest that the interaction between Btnl proteins and IELs regulates the expansion of IELs in the intestinal mucosa.

377 citations


Authors

Showing all 24120 results

NameH-indexPapersCitations
Peter J. Barnes1941530166618
Luigi Ferrucci1931601181199
Richard H. Friend1691182140032
Napoleone Ferrara167494140647
Timothy A. Springer167669122421
Anders Björklund16576984268
Hua Zhang1631503116769
Kaj Blennow1601845116237
Leif Groop158919136056
Tomas Hökfelt158103395979
Johan G. Eriksson1561257123325
Naveed Sattar1551326116368
Paul Elliott153773103839
Claude Bouchard1531076115307
Hakon Hakonarson152968101604
Network Information
Related Institutions (5)
Lund University
124.6K papers, 5M citations

96% related

University of Copenhagen
149.7K papers, 5.9M citations

96% related

Karolinska Institutet
121.1K papers, 6M citations

94% related

Utrecht University
139.3K papers, 6.2M citations

92% related

University of Amsterdam
140.8K papers, 5.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023145
2022539
20215,065
20204,657
20194,254
20183,850