scispace - formally typeset
Search or ask a question

Showing papers by "University of Göttingen published in 2011"


Journal ArticleDOI
TL;DR: This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010 and proposes new acronyms, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms.
Abstract: The site-selective formation of carbon-carbon bonds through direct functionalizations of otherwise unreactive carbon-hydrogen bonds constitutes an economically attractive strategy for an overall streamlining of sustainable syntheses. In recent decades, intensive research efforts have led to the development of various reaction conditions for challenging C-H bond functionalizations, among which transition-metal-catalyzed transformations arguably constitute thus far the most valuable tool. For instance, the use of inter alia palladium, ruthenium, rhodium, copper, or iron complexes set the stage for chemo-, site-, diastereo-, and/or enantioselective C-H bond functionalizations. Key to success was generally a detailed mechanistic understanding of the elementary C-H bond metalation step, which depending on the nature of the metal fragment can proceed via several distinct reaction pathways. Traditionally, three different modes of action were primarily considered for CH bond metalations, namely, (i) oxidative addition with electronrich late transition metals, (ii) σ-bond metathesis with early transition metals, and (iii) electrophilic activation with electrondeficient late transition metals (Scheme 1). However, more recent mechanistic studies indicated the existence of a continuum of electrophilic, ambiphilic, and nucleophilic interactions. Within this continuum, detailed experimental and computational analysis provided strong evidence for novel C-H bond metalationmechanisms relying on the assistance of a bifunctional ligand bearing an additional Lewis-basic heteroatom, such as that found in (heteroatom-substituted) secondary phosphine oxides or most prominently carboxylates (Scheme 1, iv). This novel insight into the nature of stoichiometric metalations has served as stimulus for the development of novel transformations based on cocatalytic amounts of carboxylates, which significantly broadened the scope of C-H bond functionalizations in recent years, with most remarkable progress being made in palladiumor ruthenium-catalyzed direct arylations and direct alkylations. These carboxylate-assisted C-H bond transformations were mostly proposed to proceed via a mechanism in which metalation takes place via a concerted base-assisted deprotonation. To mechanistically differentiate these intramolecular metalations new acronyms have recently been introduced into the literature, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms and will be used below where appropriate. This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010. Moreover, experimental and computational studies on stoichiometric metalation reactions being of relevance to the mechanism of these catalytic processes are discussed as well. Mechanistically related C-H bond cleavage reactions with ruthenium or iridium complexes bearing monodentate ligands are, however, only covered with respect to their working mode, and transformations with stoichiometric amounts of simple acetate bases are solely included when their mechanism was suggested to proceed by acetate-assisted metalation.

2,820 citations


Journal ArticleDOI
TL;DR: ShelXle is a user-friendly graphical user interface forSHELXL that combines an editor with syntax highlighting for SHELXL-associated files with an interactive graphical display for visualization of a three-dimensional structure.
Abstract: ShelXle is a graphical user interface for SHELXL [Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122], currently the most widely used program for small-molecule structure refinement. It combines an editor with syntax highlighting for the SHELXL-associated .ins (input) and .res (output) files with an interactive graphical display for visualization of a three-dimensional structure including the electron density (Fo) and difference density (Fo–Fc) maps. Special features of ShelXle include intuitive atom (re-)naming, a strongly coupled editor, structure visualization in various mono and stereo modes, and a novel way of displaying disorder extending over special positions. ShelXle is completely compatible with all features of SHELXL and is written entirely in C++ using the Qt4 and FFTW libraries. It is available at no cost for Windows, Linux and Mac-OS X and as source code.

2,587 citations


Journal ArticleDOI
Paul Hollingworth1, Denise Harold1, Rebecca Sims1, Amy Gerrish1  +174 moreInstitutions (59)
TL;DR: Meta-analyses of all data provided compelling evidence that ABCA7 and the MS4A gene cluster are new Alzheimer's disease susceptibility loci and independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance.
Abstract: We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10).

1,771 citations


Journal ArticleDOI
TL;DR: The authors examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects.
Abstract: We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 x 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 x 10(-9)), ANK3 (rs10994359, P = 2.5 x 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 x 10(-9)).

1,671 citations


Journal ArticleDOI
TL;DR: The authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS, and the theoretical framework for how tDCS affects motor learning is proposed.
Abstract: Since the rediscovery of transcranial direct current stimulation (tDCS) about 10 years ago, interest in tDCS has grown exponentially. A noninvasive stimulation technique that induces robust excitability changes within the stimulated cortex, tDCS is increasingly being used in proof-of-principle and stage IIa clinical trials in a wide range of neurological and psychiatric disorders. Alongside these clinical studies, detailed work has been performed to elucidate the mechanisms underlying the observed effects. In this review, the authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS. In addition, the theoretical framework for how tDCS affects motor learning is proposed.

1,353 citations


Journal ArticleDOI
Pamela Sklar1, Pamela Sklar2, Stephan Ripke1, Stephan Ripke3  +189 moreInstitutions (51)
TL;DR: An analysis of all 11,974 bipolar disorder cases and 51,792 controls confirmed genome-wide significant evidence of association for CACNA1C and identified a new intronic variant in ODZ4, and a pathway comprised of subunits of calcium channels enriched in bipolar disorder association intervals was identified.
Abstract: We conducted a combined genome-wide association study (GWAS) of 7,481 individuals with bipolar disorder (cases) and 9,250 controls as part of the Psychiatric GWAS Consortium. Our replication study tested 34 SNPs in 4,496 independent cases with bipolar disorder and 42,422 independent controls and found that 18 of 34 SNPs had P < 0.05, with 31 of 34 SNPs having signals with the same direction of effect (P = 3.8 × 10−7). An analysis of all 11,974 bipolar disorder cases and 51,792 controls confirmed genome-wide significant evidence of association for CACNA1C and identified a new intronic variant in ODZ4. We identified a pathway comprised of subunits of calcium channels enriched in bipolar disorder association intervals. Finally, a combined GWAS analysis of schizophrenia and bipolar disorder yielded strong association evidence for SNPs in CACNA1C and in the region of NEK4-ITIH1-ITIH3-ITIH4. Our replication results imply that increasing sample sizes in bipolar disorder will confirm many additional loci.

1,312 citations


Journal ArticleDOI
01 Mar 2011-Brain
TL;DR: The ability of dimethylfumarate to activate nuclear factor (erythroid-derived 2)-related factor 2 may offer a novel cytoprotective modality that further augments the natural antioxidant responses in multiple sclerosis tissue and is not yet targeted by other multiple sclerosis therapies.
Abstract: Inflammation and oxidative stress are thought to promote tissue damage in multiple sclerosis. Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for multiple sclerosis treatment. BG00012 is an oral formulation of dimethylfumarate. In a phase II multiple sclerosis trial, BG00012 demonstrated beneficial effects on relapse rate and magnetic resonance imaging markers indicative of inflammation as well as axonal destruction. First we have studied effects of dimethylfumarate on the disease course, central nervous system, tissue integrity and the molecular mechanism of action in an animal model of chronic multiple sclerosis: myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis in C57BL/6 mice. In the chronic phase of experimental autoimmune encephalomyelitis, preventive or therapeutic application of dimethylfumarate ameliorated the disease course and improved preservation of myelin, axons and neurons. In vitro, the application of fumarates increased murine neuronal survival and protected human or rodent astrocytes against oxidative stress. Application of dimethylfumarate led to stabilization of the transcription factor nuclear factor (erythroid-derived 2)-related factor 2, activation of nuclear factor (erythroid-derived 2)-related factor 2-dependent transcriptional activity and accumulation of NADP(H) quinoline oxidoreductase-1 as a prototypical target gene. Furthermore, the immediate metabolite of dimethylfumarate, monomethylfumarate, leads to direct modification of the inhibitor of nuclear factor (erythroid-derived 2)-related factor 2, Kelch-like ECH-associated protein 1, at cysteine residue 151. In turn, increased levels of nuclear factor (erythroid-derived 2)-related factor 2 and reduced protein nitrosylation were detected in the central nervous sytem of dimethylfumarate-treated mice. Nuclear factor (erythroid-derived 2)-related factor 2 was also upregulated in the spinal cord of autopsy specimens from untreated patients with multiple sclerosis. In dimethylfumarate-treated mice suffering from experimental autoimmune encephalomyelitis, increased immunoreactivity for nuclear factor (erythroid-derived 2)-related factor 2 was detected by confocal microscopy in neurons of the motor cortex and the brainstem as well as in oligodendrocytes and astrocytes. In mice deficient for nuclear factor (erythroid-derived 2)-related factor 2 on the same genetic background, the dimethylfumarate mediated beneficial effects on clinical course, axon preservation and astrocyte activation were almost completely abolished thus proving the functional relevance of this transcription factor for the neuroprotective mechanism of action. We conclude that the ability of dimethylfumarate to activate nuclear factor (erythroid-derived 2)-related factor 2 may offer a novel cytoprotective modality that further augments the natural antioxidant responses in multiple sclerosis tissue and is not yet targeted by other multiple sclerosis therapies.

936 citations


Journal ArticleDOI
TL;DR: In this cohort of patients with early-stage multiple sclerosis, cortical demyelinating lesions were frequent, inflammatory, and strongly associated with meningeal inflammation.
Abstract: Background Cortical disease has emerged as a critical aspect of the pathogenesis of multiple sclerosis, being associated with disease progression and cognitive impairment. Most studies of cortical lesions have focused on autopsy findings in patients with long-standing, chronic, progressive multiple sclerosis, and the noninflammatory nature of these lesions has been emphasized. Magnetic resonance imaging studies indicate that cortical damage occurs early in the disease. Methods We evaluated the prevalence and character of demyelinating cortical lesions in patients with multiple sclerosis. Cortical tissues were obtained in passing during biopsy sampling of white-matter lesions. In most cases, biopsy was done with the use of stereotactic procedures to diagnose suspected tumors. Patients with sufficient cortex (138 of 563 patients screened) were evaluated for cortical demyelination. Using immunohistochemistry, we characterized cortical lesions with respect to demyelinating activity, inflammatory infiltrates, ...

924 citations


Journal ArticleDOI
TL;DR: An Austrian family with 16 affected individuals by exome sequencing found a missense mutation, c.1858G>A (p.Asp620Asn), in the VPS35 gene in all seven affected family members who are alive, and found the same variant cosegregating with the disease in an autosomal-dominant mode with high but incomplete penetrance.
Abstract: To identify rare causal variants in late-onset Parkinson disease (PD), we investigated an Austrian family with 16 affected individuals by exome sequencing. We found a missense mutation, c.1858G>A (p.Asp620Asn), in the VPS35 gene in all seven affected family members who are alive. By screening additional PD cases, we saw the same variant cosegregating with the disease in an autosomal-dominant mode with high but incomplete penetrance in two further families with five and ten affected members, respectively. The mean age of onset in the affected individuals was 53 years. Genotyping showed that the shared haplotype extends across 65 kilobases around VPS35. Screening the entire VPS35 coding sequence in an additional 860 cases and 1014 controls revealed six further nonsynonymous missense variants. Three were only present in cases, two were only present in controls, and one was present in cases and controls. The familial mutation p.Asp620Asn and a further variant, c.1570C>T (p.Arg524Trp), detected in a sporadic PD case were predicted to be damaging by sequence-based and molecular-dynamics analyses. VPS35 is a component of the retromer complex and mediates retrograde transport between endosomes and the trans-Golgi network, and it has recently been found to be involved in Alzheimer disease.

781 citations


Journal ArticleDOI
TL;DR: Wild pollinators are relevant for crop productivity and stability even when honey bees are abundant, and policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.
Abstract: Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity However, few studies have considered landscape effects on the stability of ecosystem services We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services

751 citations


Journal ArticleDOI
TL;DR: In this article, exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients were performed.
Abstract: A b s t r ac t Background The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. Methods We performed exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients. We confirmed and extended an observed association, using a custom restriction-enzyme assay to analyze the DNA in 158 samples from 29 patients with the Proteus syndrome. We then assayed activation of the AKT protein in affected tissues, using phosphorylationspecific antibodies on Western blots. Results Of 29 patients with the Proteus syndrome, 26 had a somatic activating mutation (c.49G→A, p.Glu17Lys) in the oncogene AKT1, encoding the AKT1 kinase, an enzyme known to mediate processes such as cell proliferation and apoptosis. Tissues and cell lines from patients with the Proteus syndrome harbored admixtures of mutant alleles that ranged from 1% to approximately 50%. Mutant cell lines showed greater AKT phosphorylation than did control cell lines. A pair of single-cell clones that were established from the same starting culture and differed with respect to their mutation status had different levels of AKT phosphorylation. Conclusions The Proteus syndrome is caused by a somatic activating mutation in AKT1, proving the hypothesis of somatic mosaicism and implicating activation of the PI3K–AKT pathway in the characteristic clinical findings of overgrowth and tumor susceptibility in this disorder. (Funded by the Intramural Research Program of the National Human Genome Research Institute.)

Journal ArticleDOI
TL;DR: Control of electron flux, prevention of bottlenecks in the respiratory chain and electron leakage contribute to the avoidance of damage by free radicals and seem to be important in neuroprotection, inflammatory diseases and, presumably, aging.

Journal ArticleDOI
TL;DR: It is proposed that the constitutive macropinocytotic clearance of exosomes by a subset of microglia represents an important mechanism through whichmicroglia participate in the degradation of oligodendroglial membrane in an immunologically ‘silent’ manner.
Abstract: The transfer of antigens from oligodendrocytes to immune cells has been implicated in the pathogenesis of autoimmune diseases. Here, we show that oligodendrocytes secrete small membrane vesicles called exosomes, which are specifically and efficiently taken up by microglia both in vitro and in vivo. Internalisation of exosomes occurs by a macropinocytotic mechanism without inducing a concomitant inflammatory response. After stimulation of microglia with interferon-γ, we observe an upregulation of MHC class II in a subpopulation of microglia. However, exosomes are preferentially internalised in microglia that do not seem to have antigen-presenting capacity. We propose that the constitutive macropinocytotic clearance of exosomes by a subset of microglia represents an important mechanism through which microglia participate in the degradation of oligodendroglial membrane in an immunologically ‘silent’ manner. By designating the capacity for macropinocytosis and antigen presentation to distinct cells, degradation and immune function might be assigned to different subtypes of microglia.

Journal ArticleDOI
TL;DR: It is found that a high proportion of patients with Parkinson's disease–mild cognitive impairment progress to dementia in a relatively short period of time, and patients at risk of progressing to dementia are at risk.
Abstract: There is controversy regarding the definition and characteristics of mild cognitive impairment in Parkinson's disease. The Movement Disorder Society commissioned a Task Force to critically evaluate the literature and determine the frequency and characteristics of Parkinson's disease-mild cognitive impairment and its association with dementia. A comprehensive PubMed literature review was conducted using systematic inclusion and exclusion criteria. A mean of 26.7% (range, 18.9%-38.2%) of nondemented patients with Parkinson's disease have mild cognitive impairment. The frequency of Parkinson's disease-mild cognitive impairment increases with age, disease duration, and disease severity. Impairments occur in a range of cognitive domains, but single domain impairment is more common than multiple domain impairment, and within single domain impairment, nonamnestic is more common than amnestic impairment. A high proportion of patients with Parkinson's disease-mild cognitive impairment progress to dementia in a relatively short period of time. The primary conclusions of the Task Force are that: (1) Parkinson's disease-mild cognitive impairment is common, (2) there is significant heterogeneity within Parkinson's disease-mild cognitive impairment in the number and types of cognitive domain impairments, (3) Parkinson's disease-mild cognitive impairment appears to place patients at risk of progressing to dementia, and (4) formal diagnostic criteria for Parkinson's disease-mild cognitive impairment are needed.

Journal ArticleDOI
TL;DR: In this article, a CSR disclosure index based on the Global Reporting Initiative (GRI) guidelines was constructed for 130 German companies' CSR disclosures (470 firm-year observations) to investigate the determinants of these voluntary disclosure activities.
Abstract: Currently, companies spend a great deal of effort on Corporate Social Responsibility (CSR) disclosures. CSR disclosure relates to the provision of information on companies’ environmental and social performance. From an economic perspective, companies might disclose this information to avoid or decrease potential political costs. We construct a CSR disclosure index based on the Global Reporting Initiative (GRI) guidelines. Using content analysis, we analyze 130 listed German companies’ CSR disclosures (470 firm-year observations) to investigate the determinants of these voluntary disclosure activities. Our results show that, consistent with the political cost theory, German companies’ disclosures of all CSR issues are affected by their visibility, shareholder structure, and relationship with their US stakeholders. In addition, higher profitability is associated with more environmental disclosures. Finally, size and industry membership affect the amount of CSR disclosure.

Journal ArticleDOI
TL;DR: In vivo imaging and pharmacological experiments show that macrophage-derived reactive oxygen and nitrogen species (ROS and RNS) can trigger mitochondrial pathology and initiate FAD, and suggest that inflammatory axon damage might be spontaneously reversible and thus a potential target for therapy.
Abstract: In multiple sclerosis, a common inflammatory disease of the central nervous system, immune-mediated axon damage is responsible for permanent neurological deficits. How axon damage is initiated is not known. Here we use in vivo imaging to identify a previously undescribed variant of axon damage in a mouse model of multiple sclerosis. This process, termed 'focal axonal degeneration' (FAD), is characterized by sequential stages, beginning with focal swellings and progressing to axon fragmentation. Notably, most swollen axons persist unchanged for several days, and some recover spontaneously. Early stages of FAD can be observed in axons with intact myelin sheaths. Thus, contrary to the classical view, demyelination-a hallmark of multiple sclerosis-is not a prerequisite for axon damage. Instead, focal intra-axonal mitochondrial pathology is the earliest ultrastructural sign of damage, and it precedes changes in axon morphology. Molecular imaging and pharmacological experiments show that macrophage-derived reactive oxygen and nitrogen species (ROS and RNS) can trigger mitochondrial pathology and initiate FAD. Indeed, neutralization of ROS and RNS rescues axons that have already entered the degenerative process. Finally, axonal changes consistent with FAD can be detected in acute human multiple sclerosis lesions. In summary, our data suggest that inflammatory axon damage might be spontaneously reversible and thus a potential target for therapy.

Journal ArticleDOI
TL;DR: The employment of next-generation sequencing techniques for metagenomics resulted in the generation of large sequence data sets derived from various environments, such as soil, the human body, and ocean water, which opened a window into the enormous taxonomic and functional diversity of environmental microbial communities.
Abstract: Metagenomics has revolutionized microbiology by paving the way for a cultivation-independent assessment and exploitation of microbial communities present in complex ecosystems. Metagenomics comprising construction and screening of metagenomic DNA libraries has proven to be a powerful tool to isolate new enzymes and drugs of industrial importance. So far, the majority of the metagenomically exploited habitats comprised temperate environments, such as soil and marine environments. Recently, metagenomes of extreme environments have also been used as sources of novel biocatalysts. The employment of next-generation sequencing techniques for metagenomics resulted in the generation of large sequence data sets derived from various environments, such as soil, the human body, and ocean water. Analyses of these data sets opened a window into the enormous taxonomic and functional diversity of environmental microbial communities. To assess the functional dynamics of microbial communities, metatranscriptomics and metaproteomics have been developed. The combination of DNA-based, mRNA-based, and protein-based analyses of microbial communities present in different environments is a way to elucidate the compositions, functions, and interactions of microbial communities and to link these to environmental processes.

Journal ArticleDOI
TL;DR: Rituximab added to six cycles of CHOP-like chemotherapy improved long-term outcomes for young patients with good-prognosis diffuse large-B-cell lymphoma and the definition of two prognostic subgroups allows a more refined therapeutic approach to these patients than does assessment by IPI alone.
Abstract: Summary Background The MInT study was the first to show improved 3-year outcomes with the addition of rituximab to a CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone)-like regimen in young patients with good-prognosis diffuse large-B-cell lymphoma. Extended follow-up was needed to establish long-term effects. Methods In the randomised open-label MInT study, patients from 18 countries (aged 18–60 years with none or one risk factor according to the age-adjusted International Prognostic Index [IPI], stage II–IV disease or stage I disease with bulk) were randomly assigned to receive six cycles of a CHOP-like chemotherapy with or without rituximab. Bulky and extranodal sites received additional radiotherapy. Randomisation was done centrally with a computer-based tool and was stratified by centre, bulky disease, age-adjusted IPI, and chemotherapy regimen by use of a modified minimisation algorithm that incorporated a stochastic component. Patients and investigators were not masked to treatment allocation. The primary endpoint was event-free survival. Analyses were by intention to treat. This observational study is a follow-up of the MInT trial, which was stopped in 2003, and is registered at ClinicalTrials.gov, number NCT00400907. Findings The intention-to-treat population included 410 patients assigned to chemotherapy alone and 413 assigned to chemotherapy plus rituximab. After a median follow-up of 72 months (range 0·03–119), 6-year event-free survival was 55·8% (95% CI 50·4–60·9; 166 events) for patients assigned to chemotherapy alone and 74·3% (69·3–78·6; 98 events) for those assigned to chemotherapy plus rituximab (difference between groups 18·5%, 11·5–25·4, log-rank p vs 71·0% [65·1–76·1], log-rank p=0·005). 18 (4·4%, 95% CI 2·6–6·9) second malignancies occurred in the chemotherapy-alone group and 16 (3·9%, 2·2–6·2) in the chemotherapy and rituximab group (Fisher's exact p=0·730). Interpretation Rituximab added to six cycles of CHOP-like chemotherapy improved long-term outcomes for young patients with good-prognosis diffuse large-B-cell lymphoma. The definition of two prognostic subgroups allows a more refined therapeutic approach to these patients than does assessment by IPI alone. Funding Hoffmann–La Roche.

Journal ArticleDOI
TL;DR: In this paper, a review of the functionalities of spinwave devices, concepts for spin-wave based computing and magnonic crystals is presented. But the focus of this review is on the control over the interplay between localization and delocalization of the spinwave modes using femtosecond lasers.
Abstract: Novel material properties can be realized by designing waves' dispersion relations in artificial crystals. The crystal's structural length scales may range from nano- (light) up to centimeters (sound waves). Because of their emergent properties these materials are called metamaterials. Different to photonics, where the dielectric constant dominantly determines the index of refraction, in a ferromagnet the spin-wave index of refraction can be dramatically changed already by the magnetization direction. This allows a different flexibility in realizing dynamic wave guides or spin-wave switches. The present review will give an introduction into the novel functionalities of spin-wave devices, concepts for spin-wave based computing and magnonic crystals. The parameters of the magnetic metamaterials are adjusted to the spin-wave k-vector such that the magnonic band structure is designed. However, already the elementary building block of an antidot lattice, the singular hole, owns a strongly varying internal potential determined by its magnetic dipole field and a localization of spin-wave modes. Photo-magnonics reveal a way to investigate the control over the interplay between localization and delocalization of the spin-wave modes using femtosecond lasers, which is a major focus of this review. We will discuss the crucial parameters to realize free Bloch states and how, by contrast, a controlled localization might allow to gradually turn on and manipulate spin-wave interactions in spin-wave based devices in the future.

Journal ArticleDOI
TL;DR: The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition.
Abstract: Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.

Journal ArticleDOI
TL;DR: In this paper, a review of spin-wave properties and properties is presented, where the crucial parameters to realize free Bloch states and how, by contrast, a controlled localization might allow us to gradually turn on and manipulate spinwave interactions in spinwave based devices in the future.

Journal ArticleDOI
TL;DR: The short-term and long-term ecological benefits of Shade trees in coffee Coffea arabica, C. canephora and cacao Theobroma cacao agroforestry are reviewed and the poorly understood, multifunctional role of shade trees for farmers and conservation alike is emphasized.
Abstract: Summary 1. Agricultural intensification reduces ecological resilience of land-use systems, whereas paradoxically, environmental change and climate extremes require a higher response capacity than ever. Adaptation strategies to environmental change include maintenance of shade trees in tropical agroforestry, but conversion of shaded to unshaded systems is common practice to increase short-term yield. 2. In this paper, we review the short-term and long-term ecological benefits of shade trees in coffee Coffea arabica, C. canephora and cacao Theobroma cacao agroforestry and emphasize the poorly understood, multifunctional role of shade trees for farmers and conservation alike. 3. Both coffee and cacao are tropical understorey plants. Shade trees in agroforestry enhance functional biodiversity, carbon sequestration, soil fertility, drought resistance as well as weed and biological pest control. However, shade is needed for young cacao trees only and is less important in older cacao plantations. This changing response to shade regime with cacao plantation age often results in a transient role for shade and associated biodiversity in agroforestry. 4. Abandonment of old, unshaded cacao in favour of planting young cacao in new, thinned forest sites can be named ‘short-term cacao boom-and-bust cycle’, which counteracts tropical forest conservation. In a ‘long-term cacao boom-and-bust cycle’, cacao boom can be followed by cacao bust due to unmanageable pest and pathogen levels (e.g. in Brazil and Malaysia). Higher pest densities can result from physiological stress in unshaded cacao and from the larger cacao area planted. Risk-averse farmers avoid long-term vulnerability of their agroforestry systems by keeping shade as an insurance against insect pest outbreaks, whereas yield-maximizing farmers reduce shade and aim at short-term monetary benefits. 5. Synthesis and applications. Sustainable agroforestry management needs to conserve or create a diverse layer of multi-purpose shade trees that can be pruned rather than removed when crops mature. Incentives from payment-for-ecosystem services and certification schemes encourage farmers to keep high to medium shade tree cover. Reducing pesticide spraying protects functional

Journal ArticleDOI
TL;DR: It is unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline, and new research directions are identified addressing this important knowledge gap.
Abstract: Biodiversity continues to decline, despite the implementation of international conservation conventions and measures. To counteract biodiversity loss, it is pivotal to know how conservation actions affect biodiversity trends. Focussing on European farmland species, we review what is known about the impact of conservation initiatives on biodiversity. We argue that the effects of conservation are a function of conservation-induced ecological contrast, agricultural land-use intensity and landscape context. We find that, to date, only a few studies have linked local conservation effects to national biodiversity trends. It is therefore unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline. Based on this review, we identify new research directions addressing this important knowledge gap.


Journal ArticleDOI
TL;DR: Although specificity was low, the high positive predictive value of CSF α-synuclein concentrations in patients presenting with synucleinopathy-type parkinsonism might be useful in stratification of patients in future clinical trials.
Abstract: Summary Background Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are brain disorders characterised by intracellular α-synuclein deposits. We aimed to assess whether reduction of α-synuclein concentrations in CSF was a marker for α-synuclein deposition in the brain, and therefore diagnostic of synucleinopathies. Methods We assessed potential extracellular-fluid markers of α-synuclein deposition in the brain (total α-synuclein and total tau in CSF, and total α-synuclein in serum) in three cohorts: a cross-sectional training cohort of people with Parkinson's disease, multiple system atrophy, dementia with Lewy bodies, Alzheimer's disease, or other neurological disorders; a group of patients with autopsy-confirmed dementia with Lewy bodies, Alzheimer's disease, or other neurological disorders (CSF specimens were drawn ante mortem during clinical investigations); and a validation cohort of patients who between January, 2003, and December, 2006, were referred to a specialised movement disorder hospital for routine inpatient admission under the working diagnosis of parkinsonism. CSF and serum samples were assessed by ELISA, and clinical diagnoses were made according to internationally established criteria. Mean differences in biomarkers between diagnostic groups were assessed with conventional parametric and non-parametric statistics. Findings In our training set (n=273), people with Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies had lower CSF α-synuclein concentrations than patients with Alzheimer's disease and other neurological disorders. CSF α-synuclein and tau values separated participants with synucleinopathies well from those with other disorders (p Interpretation Mean CSF α-synuclein concentrations as measured by ELISA are significantly lower in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy than in other neurological diseases. Although specificity was low, the high positive predictive value of CSF α-synuclein concentrations in patients presenting with synucleinopathy-type parkinsonism might be useful in stratification of patients in future clinical trials. Funding American Parkinson Disease Association, Stifterverband fur die Deutsche Wissenschaft, Michael J Fox Foundation for Parkinson's Research, National Institutes of Health, Parkinson Research Consortium Ottawa, and the Government of Canada.

Journal ArticleDOI
10 Mar 2011
TL;DR: The functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli are discussed and the recently described roles of these pathways in cancer stem cells, cellular senescence and aging are evaluated.
Abstract: Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health.

Journal ArticleDOI
24 Nov 2011-Nature
TL;DR: The results demonstrate that electrostatic protein–lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.
Abstract: Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A, which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis. However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, co-reconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.

Journal ArticleDOI
TL;DR: This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging.
Abstract: William H. Chappell 1 , Linda S. Steelman 1,2 , Jacquelyn M. Long 2 , Ruth C. Kempf 2 , Stephen L. Abrams 1 , Richard A. Franklin 1 , Jorg Basecke 3 , Franca Stivala 4 , Marco Donia 4 , Paolo Fagone 4 , Graziella Malaponte 4 , Maria C. Mazzarino 4 , Ferdinando Nicoletti 4 , Massimo Libra 4 , Danijela Maksimovic-Ivanic 5 , Sanja Mijatovic 5 , Giuseppe Montalto 6 , Melchiorre Cervello 7 , Piotr Laidler 8 , Michele Milella 9 , Agostino Tafuri 10 , Antonio Bonati 11 , Camilla Evangelisti 12 , Lucio Cocco 12 , Alberto M. Martelli 12,13 , and James A. McCubrey 1 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University 2 Department of Physics, Greenville, NC 27858 USA 3 Department of Medicine University of Gottingen, Gottingen, Germany 4 Department of Biomedical Sciences, University of Catania, Catania, Italy 5 Department of Immunology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia 6 Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy 7 Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy 8 Department of Medical Biochemistry Jagiellonian University Medical College, Krakow, Poland 9 Regina Elena Cancer Center, Via Elio Chianesi n.53, Rome 00144, Italy 10 University of Rome, La Sapienza, Department of Hematology-Oncology, Via Benevento 6, Rome 99161, Italy 11 University Hospital of Parma, Unit of Hematology and Bone-Marrow Transplantation, Via Gramsi n.14, Parma 43100, Italy 12 Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell’Apparato Locomotore, Universita di Bologna, Bologna, Italy 13 IGM-CNR, Sezione di Bologna, C/o IOR, Bologna, Italy Keywords: Targeted Therapy, Combination Therapy, Drug Resistance, Cancer Stem Cells, Aging, Senescence, Raf, Akt, PI3K, mTOR Received: February 25, 2011; Accepted: March 10, 2011; Published: March 11, 2011; Correspondence: James A. McCubrey, e-mail: // // Abstract The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging.

Journal ArticleDOI
TL;DR: It is concluded that AEM should be adapted to landscape structure and the species groups at which they are targeted, highlighting that the one-size-fits-all approach of many agri-environmental programmes is not an efficient way of spending the limited funds available for biodiversity conservation on farmland.
Abstract: Agri-environmental management (AEM) is heralded as being key to biodiversity conservation on farmland, yet results of these schemes have been mixed, making their general utility questionable. We test with meta-analysis whether the benefits of AEM for species richness and abundance of plants and animals are determined by the surrounding landscape context. Across all studies (109 observations for species richness and 114 observations for abundance), AEM significantly increased species richness and their abundance. More specifically, we test the hypothesis that AEM benefits species richness and abundance (i.e. increases the difference between fields with and without AEM) more in simple than in complex landscapes. In croplands, species richness but not abundance was significantly enhanced in simple but not in complex landscapes. In grasslands, AEM effectively enhanced species richness and abundance regardless of landscape context. Pollinators were significantly enhanced by AEM in simple but not in complex landscapes in both croplands and grasslands. Our results highlight that the one-size-fits-all approach of many agri-environmental programmes is not an efficient way of spending the limited funds available for biodiversity conservation on farmland. Therefore, we conclude that AEM should be adapted to landscape structure and the species groups at which they are targeted.

Journal ArticleDOI
05 Aug 2011-Science
TL;DR: Fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota through convergent evolution and divergence among fungal decomposers.
Abstract: Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.