scispace - formally typeset
Search or ask a question

Showing papers by "University of Göttingen published in 2019"


Journal ArticleDOI
TL;DR: A comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018 is provided.
Abstract: C–H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C–H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C–H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C–H activation until summer 2018.

1,417 citations


Journal ArticleDOI
Eli A. Stahl1, Eli A. Stahl2, Gerome Breen3, Andreas J. Forstner  +339 moreInstitutions (107)
TL;DR: Genome-wide analysis identifies 30 loci associated with bipolar disorder, allowing for comparisons of shared genes and pathways with other psychiatric disorders, including schizophrenia and depression.
Abstract: Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.

1,090 citations


Journal ArticleDOI
TL;DR: The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.
Abstract: Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil-plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion ( Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.

785 citations


Journal ArticleDOI
13 Feb 2019-Nature
TL;DR: Insight is provided into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.
Abstract: Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system1-4. These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.

755 citations


Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations


Journal ArticleDOI
31 Oct 2019-Nature
TL;DR: The results suggest that major drivers of arthropod decline act at larger spatial scales, and are associated with agriculture at the landscape level, which implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices.
Abstract: Recent reports of local extinctions of arthropod species1, and of massive declines in arthropod biomass2, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another. Here we analyse data from more than 1 million individual arthropods (about 2,700 species), from standardized inventories taken between 2008 and 2017 at 150 grassland and 140 forest sites in 3 regions of Germany. Overall gamma diversity in grasslands and forests decreased over time, indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and number of species declined by 67%, 78% and 34%, respectively. The decline was consistent across trophic levels and mainly affected rare species; its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with a higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number—but not abundance—decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in three-year intervals. The decline affected rare and abundant species, and trends differed across trophic levels. Our results show that there are widespread declines in arthropod biomass, abundance and the number of species across trophic levels. Arthropod declines in forests demonstrate that loss is not restricted to open habitats. Our results suggest that major drivers of arthropod decline act at larger spatial scales, and are (at least for grasslands) associated with agriculture at the landscape level. This implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices. Analyses of a dataset of arthropod biomass, abundance and diversity in grassland and forest habitats in Germany for the period 2008–2017 reveal that drivers of arthropod declines act at the landscape level.

625 citations


Journal ArticleDOI
TL;DR: The specific and mass activity activities of some state-of-the-art catalysts are benchmarked to facilitate the comparison of catalyst activity for these four reactions across different laboratories.
Abstract: Electrochemical energy storage by making H2 an energy carrier from water splitting relies on four elementary reactions, i.e., the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein, the central objective is to recommend systematic protocols for activity measurements of these four reactions and benchmark activities for comparison, which is critical to facilitate the research and development of catalysts with high activity and stability. Details for the electrochemical cell setup, measurements, and data analysis used to quantify the kinetics of the HER, HOR, OER, and ORR in acidic and basic solutions are provided, and examples of state-of-the-art specific and mass activity of catalysts to date are given. First, the experimental setup is discussed to provide common guidelines for these reactions, including the cell design, reference electrode selection, counter electrode concerns, and working electrode preparation. Second, experimental protocols, including data collection and processing such as ohmic- and background-correction and catalyst surface area estimation, and practice for testing and comparing different classes of catalysts are recommended. Lastly, the specific and mass activity activities of some state-of-the-art catalysts are benchmarked to facilitate the comparison of catalyst activity for these four reactions across different laboratories.

611 citations


Journal ArticleDOI
24 Jul 2019-Nature
TL;DR: High-resolution spatial maps of the global abundance of soil nematodes and the composition of functional groups show that soil nematode are found in higher abundances in sub-Arctic regions, than in temperate or tropical regions.
Abstract: Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.

552 citations


Journal ArticleDOI
01 Mar 2019-Brain
TL;DR: In a prospective multicentre study involving 1280 patients with idiopathic RBD, Postuma et al. test the predictive power of 21 prodromal markers of neurodegeneration, providing a template for planning neuroprotective trials.
Abstract: Idiopathic REM sleep behaviour disorder (iRBD) is a powerful early sign of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This provides an unprecedented opportunity to directly observe prodromal neurodegenerative states, and potentially intervene with neuroprotective therapy. For future neuroprotective trials, it is essential to accurately estimate phenoconversion rate and identify potential predictors of phenoconversion. This study assessed the neurodegenerative disease risk and predictors of neurodegeneration in a large multicentre cohort of iRBD. We combined prospective follow-up data from 24 centres of the International RBD Study Group. At baseline, patients with polysomnographically-confirmed iRBD without parkinsonism or dementia underwent sleep, motor, cognitive, autonomic and special sensory testing. Patients were then prospectively followed, during which risk of dementia and parkinsonsim were assessed. The risk of dementia and parkinsonism was estimated with Kaplan-Meier analysis. Predictors of phenoconversion were assessed with Cox proportional hazards analysis, adjusting for age, sex, and centre. Sample size estimates for disease-modifying trials were calculated using a time-to-event analysis. Overall, 1280 patients were recruited. The average age was 66.3 ± 8.4 and 82.5% were male. Average follow-up was 4.6 years (range = 1-19 years). The overall conversion rate from iRBD to an overt neurodegenerative syndrome was 6.3% per year, with 73.5% converting after 12-year follow-up. The rate of phenoconversion was significantly increased with abnormal quantitative motor testing [hazard ratio (HR) = 3.16], objective motor examination (HR = 3.03), olfactory deficit (HR = 2.62), mild cognitive impairment (HR = 1.91-2.37), erectile dysfunction (HR = 2.13), motor symptoms (HR = 2.11), an abnormal DAT scan (HR = 1.98), colour vision abnormalities (HR = 1.69), constipation (HR = 1.67), REM atonia loss (HR = 1.54), and age (HR = 1.54). There was no significant predictive value of sex, daytime somnolence, insomnia, restless legs syndrome, sleep apnoea, urinary dysfunction, orthostatic symptoms, depression, anxiety, or hyperechogenicity on substantia nigra ultrasound. Among predictive markers, only cognitive variables were different at baseline between those converting to primary dementia versus parkinsonism. Sample size estimates for definitive neuroprotective trials ranged from 142 to 366 patients per arm. This large multicentre study documents the high phenoconversion rate from iRBD to an overt neurodegenerative syndrome. Our findings provide estimates of the relative predictive value of prodromal markers, which can be used to stratify patients for neuroprotective trials.

544 citations


Journal ArticleDOI
TL;DR: This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology.
Abstract: The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to “traditional” precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal–ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.

502 citations


Journal ArticleDOI
Heather Orpana1, Heather Orpana2, Laurie B. Marczak3, Megha Arora3  +338 moreInstitutions (173)
06 Feb 2019-BMJ
TL;DR: Age standardised mortality rates for suicide have greatly reduced since 1990, but suicide remains an important contributor to mortality worldwide and can be targeted towards vulnerable populations if they are informed by variations in mortality rates.
Abstract: Objectives To use the estimates from the Global Burden of Disease Study 2016 to describe patterns of suicide mortality globally, regionally, and for 195 countries and territories by age, sex, and Socio-demographic index, and to describe temporal trends between 1990 and 2016. Design Systematic analysis. Main outcome measures Crude and age standardised rates from suicide mortality and years of life lost were compared across regions and countries, and by age, sex, and Socio-demographic index (a composite measure of fertility, income, and education). Results The total number of deaths from suicide increased by 6.7% (95% uncertainty interval 0.4% to 15.6%) globally over the 27 year study period to 817 000 (762 000 to 884 000) deaths in 2016. However, the age standardised mortality rate for suicide decreased by 32.7% (27.2% to 36.6%) worldwide between 1990 and 2016, similar to the decline in the global age standardised mortality rate of 30.6%. Suicide was the leading cause of age standardised years of life lost in the Global Burden of Disease region of high income Asia Pacific and was among the top 10 leading causes in eastern Europe, central Europe, western Europe, central Asia, Australasia, southern Latin America, and high income North America. Rates for men were higher than for women across regions, countries, and age groups, except for the 15 to 19 age group. There was variation in the female to male ratio, with higher ratios at lower levels of Socio-demographic index. Women experienced greater decreases in mortality rates (49.0%, 95% uncertainty interval 42.6% to 54.6%) than men (23.8%, 15.6% to 32.7%). Conclusions Age standardised mortality rates for suicide have greatly reduced since 1990, but suicide remains an important contributor to mortality worldwide. Suicide mortality was variable across locations, between sexes, and between age groups. Suicide prevention strategies can be targeted towards vulnerable populations if they are informed by variations in mortality rates.

Journal ArticleDOI
TL;DR: Front-line treatment with A+CHP is superior to CHOP for patients with CD30-positive peripheral T-cell lymphomas as shown by a significant improvement in progression-free survival and overall survival with a manageable safety profile.

Journal ArticleDOI
Matteo Dainese1, Emily A. Martin1, Marcelo A. Aizen2, Matthias Albrecht, Ignasi Bartomeus3, Riccardo Bommarco4, Luísa G. Carvalheiro5, Luísa G. Carvalheiro6, Rebecca Chaplin-Kramer7, Vesna Gagic8, Lucas Alejandro Garibaldi9, Jaboury Ghazoul10, Heather Grab11, Mattias Jonsson4, Daniel S. Karp12, Christina M. Kennedy13, David Kleijn14, Claire Kremen15, Douglas A. Landis16, Deborah K. Letourneau17, Lorenzo Marini18, Katja Poveda11, Romina Rader19, Henrik G. Smith20, Teja Tscharntke21, Georg K.S. Andersson20, Isabelle Badenhausser22, Isabelle Badenhausser23, Svenja Baensch21, Antonio Diego M. Bezerra24, Felix J.J.A. Bianchi14, Virginie Boreux10, Virginie Boreux25, Vincent Bretagnolle23, Berta Caballero-López, Pablo Cavigliasso26, Aleksandar Ćetković27, Natacha P. Chacoff28, Alice Classen1, Sarah Cusser29, Felipe D. da Silva e Silva30, G. Arjen de Groot14, Jan H. Dudenhöffer31, Johan Ekroos20, Thijs P.M. Fijen14, Pierre Franck22, Breno Magalhães Freitas24, Michael P.D. Garratt32, Claudio Gratton33, Juliana Hipólito34, Juliana Hipólito9, Andrea Holzschuh1, Lauren Hunt35, Aaron L. Iverson11, Shalene Jha36, Tamar Keasar37, Tania N. Kim38, Miriam Kishinevsky37, Björn K. Klatt21, Björn K. Klatt20, Alexandra-Maria Klein25, Kristin M. Krewenka39, Smitha Krishnan40, Smitha Krishnan10, Ashley E. Larsen41, Claire Lavigne22, Heidi Liere42, Bea Maas43, Rachel E. Mallinger44, Eliana Martinez Pachon, Alejandra Martínez-Salinas45, Timothy D. Meehan46, Matthew G. E. Mitchell15, Gonzalo Alberto Roman Molina47, Maike Nesper10, Lovisa Nilsson20, Megan E. O'Rourke48, Marcell K. Peters1, Milan Plećaš27, Simon G. Potts33, Davi de L. Ramos, Jay A. Rosenheim12, Maj Rundlöf20, Adrien Rusch49, Agustín Sáez2, Jeroen Scheper14, Matthias Schleuning, Julia Schmack50, Amber R. Sciligo51, Colleen L. Seymour, Dara A. Stanley52, Rebecca Stewart20, Jane C. Stout53, Louis Sutter, Mayura B. Takada54, Hisatomo Taki, Giovanni Tamburini25, Matthias Tschumi, Blandina Felipe Viana55, Catrin Westphal21, Bryony K. Willcox19, Stephen D. Wratten56, Akira Yoshioka57, Carlos Zaragoza-Trello3, Wei Zhang58, Yi Zou59, Ingolf Steffan-Dewenter1 
University of Würzburg1, National University of Comahue2, Spanish National Research Council3, Swedish University of Agricultural Sciences4, University of Lisbon5, Universidade Federal de Goiás6, Stanford University7, Commonwealth Scientific and Industrial Research Organisation8, National University of Río Negro9, ETH Zurich10, Cornell University11, University of California, Davis12, The Nature Conservancy13, Wageningen University and Research Centre14, University of British Columbia15, Great Lakes Bioenergy Research Center16, University of California, Santa Cruz17, University of Padua18, University of New England (Australia)19, Lund University20, University of Göttingen21, Institut national de la recherche agronomique22, University of La Rochelle23, Federal University of Ceará24, University of Freiburg25, Concordia University Wisconsin26, University of Belgrade27, National University of Tucumán28, Michigan State University29, University of Brasília30, University of Greenwich31, University of Reading32, University of Wisconsin-Madison33, National Institute of Amazonian Research34, Boise State University35, University of Texas at Austin36, University of Haifa37, Kansas State University38, University of Hamburg39, Bioversity International40, University of California, Santa Barbara41, Seattle University42, University of Vienna43, University of Florida44, Centro Agronómico Tropical de Investigación y Enseñanza45, National Audubon Society46, University of Buenos Aires47, Virginia Tech48, University of Bordeaux49, University of Auckland50, University of California, Berkeley51, University College Dublin52, Trinity College, Dublin53, University of Tokyo54, Federal University of Bahia55, Lincoln University (New Zealand)56, National Institute for Environmental Studies57, International Food Policy Research Institute58, Xi'an Jiaotong-Liverpool University59
TL;DR: Using a global database from 89 studies (with 1475 locations), the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change is partitioned.
Abstract: Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.

Journal ArticleDOI
TL;DR: The usage and advantages of landscapemetrics are demonstrated by analysing the influence of different sampling schemes on the estimation of landscape metrics, and the many advantages of the package are demonstrated, especially its easy integration into large workflows.
Abstract: Quantifying landscape characteristics and linking them to ecological processes is one of the central goals of landscape ecology. Landscape metrics are a widely used tool for the analysis of patch‐based, discrete land‐cover classes. Existing software to calculate landscape metrics has several constraints, such as being limited to a single platform, not being open‐source or involving a complicated integration into large workflows. We present landscapemetrics, an open‐source R package that overcomes many constraints of existing landscape metric software. The package includes an extensive collection of commonly used landscape metrics in a tidy workflow. To facilitate the integration into large workflows, landscapemetrics is based on a well‐established spatial framework in R. This allows pre‐processing of land‐cover maps or further statistical analysis without importing and exporting the data from and to different software environments. Additionally, the package provides many utility functions to visualize, extract, and sample landscape metrics. Lastly, we provide building‐blocks to motivate the development and integration of new metrics in the future. We demonstrate the usage and advantages of landscapemetrics by analysing the influence of different sampling schemes on the estimation of landscape metrics. In so doing, we demonstrate the many advantages of the package, especially its easy integration into large workflows. These new developments should help with the integration of landscape analysis in ecological research, given that ecologists are increasingly using R for the statistical analysis, modelling and visualization of spatial data.

Journal ArticleDOI
TL;DR: An updated version of the principles of ethical authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle (JCSM) and its two daughter journals J CSM Rapid Communication and JCSM Clinical Reports is details.
Abstract: This article details an updated version of the principles of ethical authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle (JCSM) and its two daughter journals JCSM Rapid Communication and JCSM Clinical Reports. We request of all author sending to the journal a paper for consideration that at the time of submission to JCSM, the corresponding author, on behalf of all co-authors, needs to certify adherence to these principles. The principles are as follows: all authors listed on a manuscript considered for publication have approved its submission and (if accepted) approve publication in JCSM as provided; each named author has made a material and independent contribution to the work submitted for publication; no person who has a right to be recognized as author has been omitted from the list of authors on the submitted manuscript; the submitted work is original and is neither under consideration elsewhere nor that it has been published previously in whole or in part other than in abstract form; all authors certify that the submitted work is original and does not contain excessive overlap with prior or contemporaneous publication elsewhere, and where the publication reports on cohorts, trials, or data that have been reported on before the facts need to be acknowledged and these other publications must be referenced; all original research work has been approved by the relevant bodies such as institutional review boards or ethics committees; all relevant conflicts of interest, financial or otherwise, that may affect the authors' ability to present data objectively, and relevant sources of funding of the research in question have been duly declared in the manuscript; the manuscript in its published form will be maintained on the servers of JCSM as a valid publication only as long as all statements in the guidelines on ethical publishing remain true. If any of the aforementioned statements ceases to be true, the authors have a duty to notify as soon as possible the Editors of JCSM, JCSM Rapid Communication, and JCSM Clinical Reports, respectively, so that the available information regarding the published article can be updated and/or the manuscript can be withdrawn.

Journal ArticleDOI
TL;DR: This work explains and compares the different methods available to construct a time-evolved matrix-product state, namely theTime-evolving block decimation, the MPO $W^\mathrm{II}$ method, the global Krylov method,The local Krykov method and the one- and two-site time-dependent variational principle.

Journal ArticleDOI
TL;DR: In landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively, suggesting that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.
Abstract: Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species’ dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.

Journal ArticleDOI
TL;DR: A GWAS from the Psychiatric Genomics Consortium is reported in which two risk loci in European ancestry and one locus in African ancestry individuals are identified and it is found that PTSD is genetically correlated with several other psychiatric traits.
Abstract: The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.

Journal ArticleDOI
18 Sep 2019
TL;DR: Sherpa as discussed by the authors is a general-purpose Monte Carlo event generator for the simulation of particle collisions in high-energy collider experiments, which is heavily used for event generation in the analysis and interpretation of LHC Run 1 and Run 2 data.
Abstract: Sherpa is a general-purpose Monte Carlo event generator for the simulation of particle collisions in high-energy collider experiments. We summarize essential features and improvements of the Sherpa 2.2 release series, which is heavily used for event generation in the analysis and interpretation of LHC Run 1 and Run 2 data. We highlight a decade of developments towards ever higher precision in the simulation of particle-collision events.

Journal ArticleDOI
TL;DR: In this article, a literature analysis allows the conclusion that the rhizosphere extent for most of the parameters assessed by non-destructive visualization techniques is 0.5-4 cm, but exceeds 4 cm for gases, nitrate, water and redox potential.
Abstract: The soil volume affected by roots – the rhizosphere – is one of the most important microbial hotspots determining the processes, dynamics and cycling of carbon (C), nutrients and water in terrestrial ecosystems. Rhizosphere visualization is necessary to understand, localize and quantify the ongoing processes and functions, but quantitative conclusions are very uncertain because of: 1) the continuum of the parameters between the root surface and root-free soil, i.e., there are no sharp borders, 2) differences in the distributions of various parameters (C, nutrients, pH, enzyme and microbial activities, gases, water etc.) across and along roots, 3) temporal changes of the parameters and processes with root growth as well as with water and C flows. In situ techniques: planar optodes, zymography, sensitive gels, 14C and neutron imaging as well as destructive approaches (thin layer slicing) have been used to analyze the rhizosphere extent and the gradients of various physico-chemical and biological characteristics: pH, CO2, O2, redox potential, enzyme activities, content of water, nutrients and excess elements, and organic compounds. A literature analysis allows the conclusion that: i) the rhizosphere extent for most of the parameters assessed by non-destructive visualization techniques is 0.5–4 mm but exceeds 4 mm for gases, nitrate, water and redox potential. ii) The rhizosphere extent of nutrients (N, P) is decoupled from the extent of the corresponding enzyme activities. iii) The imbalance between element flows to and uptake by roots may lead to accumulation of excess elements and formation of root carapaces (e.g. CaCO3 rhizoliths, Fe plaque) ranging up to a few cm. iv) All destructive approaches show a much (3–5 times) larger rhizosphere extent compared to visualization techniques. These conclusions are crucial for a mechanistic understanding of rhizosphere properties and functioning, estimation of the nutrient stocks available to roots, and for rhizosphere modelling considering root growth and architecture. Overall, roots function as ecosystem engineers and build their environment, serving as the main factors shaping rhizosphere extent. Sharp gradients are formed within a few days for nutrients and enzymes, but more time is necessary for the establishment of specific microbial communities. Despite the very strong dynamics of most parameters, their stationarity is reached within a few days because the release of C and enzymes or nutrient uptake are very quickly compensated by utilization by surrounding microorganisms or/and sorption and diffusion processes. We conclude that despite the dynamic nature of each property, the rhizosphere gradients, their extent and shape are quasi-stationary because of the opposite directions of their formation processes.

Journal ArticleDOI
TL;DR: Up-front CRT followed by chemotherapy resulted in better compliance with CRT but worse compliance with chemotherapy compared with group A, and long-term follow-up will assess whether improved pCR in group B translates to better oncologic outcome.
Abstract: PURPOSETotal neoadjuvant therapy is a new paradigm for rectal cancer treatment. Optimal scheduling of preoperative chemoradiotherapy (CRT) and chemotherapy remains to be established.PATIENTS AND ME...

Journal ArticleDOI
TL;DR: A 32-multi-model ensemble is tested and applied to simulate global wheat yield and quality in a changing climate to potential benefits of elevated atmospheric CO2 concentration by 2050, likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions.
Abstract: Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.

Journal ArticleDOI
TL;DR: An integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use is presented.
Abstract: Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.

Journal ArticleDOI
TL;DR: This study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.
Abstract: Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.

Journal ArticleDOI
TL;DR: Given the high disease burden caused by hypertension in LMICs, nationally representative hypertension care cascades, as constructed in this study, are an important measure of progress towards achieving universal health coverage.

Journal ArticleDOI
27 Mar 2019-Nature
TL;DR: The study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.
Abstract: Agriculture and the exploitation of natural resources have transformed tropical mountain ecosystems across the world, and the consequences of these transformations for biodiversity and ecosystem functioning are largely unknown1-3. Conclusions that are derived from studies in non-mountainous areas are not suitable for predicting the effects of land-use changes on tropical mountains because the climatic environment rapidly changes with elevation, which may mitigate or amplify the effects of land use4,5. It is of key importance to understand how the interplay of climate and land use constrains biodiversity and ecosystem functions to determine the consequences of global change for mountain ecosystems. Here we show that the interacting effects of climate and land use reshape elevational trends in biodiversity and ecosystem functions on Africa's largest mountain, Mount Kilimanjaro (Tanzania). We find that increasing land-use intensity causes larger losses of plant and animal species richness in the arid lowlands than in humid submontane and montane zones. Increases in land-use intensity are associated with significant changes in the composition of plant, animal and microorganism communities; stronger modifications of plant and animal communities occur in arid and humid ecosystems, respectively. Temperature, precipitation and land use jointly modulate soil properties, nutrient turnover, greenhouse gas emissions, plant biomass and productivity, as well as animal interactions. Our data suggest that the response of ecosystem functions to land-use intensity depends strongly on climate; more-severe changes in ecosystem functioning occur in the arid lowlands and the cold montane zone. Interactions between climate and land use explained-on average-54% of the variation in species richness, species composition and ecosystem functions, whereas only 30% of variation was related to single drivers. Our study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.

Journal ArticleDOI
TL;DR: It is proposed that METTL5–TRMT112 acts by extruding the adenosine to be modified from a double-stranded nucleic acid, supporting that its RNA-binding mode differs distinctly from that of other m6A RNA methyltransferases.
Abstract: N6-methyladenosine (m6A) has recently been found abundantly on messenger RNA and shown to regulate most steps of mRNA metabolism. Several important m6A methyltransferases have been described functionally and structurally, but the enzymes responsible for installing one m6A residue on each subunit of human ribosomes at functionally important sites have eluded identification for over 30 years. Here, we identify METTL5 as the enzyme responsible for 18S rRNA m6A modification and confirm ZCCHC4 as the 28S rRNA modification enzyme. We show that METTL5 must form a heterodimeric complex with TRMT112, a known methyltransferase activator, to gain metabolic stability in cells. We provide the first atomic resolution structure of METTL5-TRMT112, supporting that its RNA-binding mode differs distinctly from that of other m6A RNA methyltransferases. On the basis of similarities with a DNA methyltransferase, we propose that METTL5-TRMT112 acts by extruding the adenosine to be modified from a double-stranded nucleic acid.

Journal ArticleDOI
12 Dec 2019-Cell
TL;DR: This study finds that microglia express a conserved core gene program of orthologous genes from rodents to humans, including ligands and receptors associated with interactions between glia and neurons, which provides an essential resource of conserved and divergent microglian pathways across evolution.

Journal ArticleDOI
TL;DR: A snapshot of the present state of Surface Acoustic Wave science and technology in 2019 is presented and an opinion on the challenges and opportunities that the future holds is provided from a group of renown experts covering the interdisciplinary key areas.
Abstract: Today, Surface Acoustic Waves (SAWs) and Bulk Acoustic Waves (BAW) are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to these continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum, or integrated optomechanical are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and span from single atomic or nanoscopic units up even to the millimeter scale. The aim of this roadmap article is to present a snapshot of the present state of Surface Acoustic Wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science.

Journal ArticleDOI
26 Apr 2019-Science
TL;DR: A framework for rewilding actions that can serve as a guideline for researchers and managers and aims to promote beneficial interactions between society and nature, and identifies trophic complexity, stochastic disturbances, and dispersal as three critical components of natural ecosystem dynamics.
Abstract: BACKGROUND Rapid global change is creating fundamental challenges for the persistence of natural ecosystems and their biodiversity. Conservation efforts aimed at the protection of landscapes have had mixed success, and there is an increasing awareness that the long-term protection of biodiversity requires inclusion of flexible restoration along with protection. Rewilding is one such approach that has been both promoted and criticized in recent years. Proponents emphasize the potential of rewilding to tap opportunities for restoration while creating benefits for both ecosystems and societies. Critics discuss the lack of a consistent definition of rewilding and insufficient knowledge about its potential outcomes. Other criticisms arise from the mistaken notion that rewilding actions are planned without considering societal acceptability and benefits. Here, we present a framework for rewilding actions that can serve as a guideline for researchers and managers. The framework is applicable to a variety of rewilding approaches, ranging from passive to trophic rewilding, and aims to promote beneficial interactions between society and nature. ADVANCES The concept of rewilding has evolved from its initial emphasis on protecting large, connected areas for large carnivore conservation to a process-oriented, dynamic approach. On the basis of concepts from resilience and complexity theory of social-ecological systems, we identify trophic complexity, stochastic disturbances, and dispersal as three critical components of natural ecosystem dynamics. We propose that the restoration of these processes, and their interactions, can lead to increased self-sustainability of ecosystems and should be at the core of rewilding actions. Building on these concepts, we develop a framework to design and evaluate rewilding plans. Alongside ecological restoration goals, our framework emphasizes people’s perceptions and experiences of wildness and the regulating and material contributions from restoring nature. These societal aspects are important outcomes and may be critical factors for the success of rewilding initiatives (see the figure). We further identify current societal constraints on rewilding and suggest actions to mitigate them. OUTLOOK The concept of rewilding challenges us to rethink the way we manage nature and to broaden our vision about how nature will respond to changes that society brings, both intentionally and unintentionally. The effects of rewilding actions will be specific to each ecosystem, and thus a deep understanding of the processes that shape ecosystems is critical to anticipate these effects and to take appropriate management actions. In addition, the decision of whether a rewilding approach is desirable should consider stakeholders’ needs and expectations. To this end, structured restoration planning—based on participatory processes involving researchers, managers, and stakeholders—that includes monitoring and adaptive management can be used. With the recent designation of 2021–2030 as the “decade of ecosystem restoration” by the United Nations General Assembly, policy- and decision-makers could push rewilding topics to the forefront of discussions about how to reach post-2020 biodiversity goals.