scispace - formally typeset
Search or ask a question
Institution

University of Graz

EducationGraz, Steiermark, Austria
About: University of Graz is a education organization based out in Graz, Steiermark, Austria. It is known for research contribution in the topics: Population & Quantum chromodynamics. The organization has 17934 authors who have published 37489 publications receiving 1110980 citations. The organization is also known as: Carolo Franciscea Graecensis & Karl Franzens Universität.


Papers
More filters
Journal ArticleDOI
TL;DR: The single anulus lamella may be seen as the elementary structural unit of the anulus fibrosus, and exhibits marked anisotropy and distinct regional variation of tensile properties and fiber angles.
Abstract: The mechanical behavior of the entire anulus fibrosus is determined essentially by the tensile properties of its lamellae, their fiber orientations, and the regional variation of these quantities. Corresponding data are rare in the literature. The paper deals with an in vitro study of single lamellar anulus lamellae and aims to determine (i) their tensile response and regional variation, and (ii) the orientation of lamellar collagen fibers and their regional variation. Fresh human body-disc-body units (L1–L2, n=11) from cadavers were cut midsagittally producing two hemidisc units. One hemidisc was used for the preparation of single lamellar anulus specimens for tensile testing, while the other one was used for the investigation of the lamellar fiber orientation. Single lamellar anulus specimens with adjacent bone fragments were isolated from four anatomical regions: superficial and deep lamellae (3.9±0.21 mm, mean ± SD, apart from the outer boundary surface of the anulus fibrosus) at ventro-lateral and dorsal positions. The specimens underwent cyclic uniaxial tensile tests at three different strain rates in 0.15 mol/l NaCl solution at 37°C, whereby the lamellar fiber direction was aligned with the load axis. For the characterization of the tensile behavior three moduli were calculated: Elow (0–0.1 MPa), Emedium (0.1–0.5 MPa) and Ehigh (0.5–1 MPa). Additionally, specimens were tested with the load axis transverse to the fiber direction. From the second hemidisc fiber angles with respect to the horizontal plane were determined photogrammetrically from images taken at six circumferential positions from ventral to dorsal and at three depth levels. Tensile moduli along the fiber direction were in the range of 28–78 MPa (regional mean values). Superficial lamellae have larger Emedium (p=0.017) and Ehigh (p=0.012) than internal lamellae, and the mean value of superficial lamellae is about three times higher than that of deep lamellae. Tensile moduli of ventro-lateral lamellae do not differ significantly from the tensile moduli of dorsal lamellae, and Elow is generally indifferent with respect to the anatomical region. Tensile moduli transverse to the fiber direction were about two orders of magnitude smaller (0.22±0.2 MPa, mean ± SD, n=5). Tensile properties are not correlated significantly with donor age. Only small viscoelastic effects were observed. The regional variation of lamellar fiber angle ϕ is described appropriately by a regression line |ϕ|=23.2+0.130×α (r2=0.55, p<0.001), where α is the polar angle associated with the circumferential position. The single anulus lamella may be seen as the elementary structural unit of the anulus fibrosus, and exhibits marked anisotropy and distinct regional variation of tensile properties and fiber angles. These features must be considered for appropriate physical and numerical modeling of the anulus fibrosus.

389 citations

Journal ArticleDOI
TL;DR: This group of MS researchers and clinicians with varied expertise took stock of the current state of the field, and identified several important practical and theoretical challenges, including key knowledge gaps and methodologic limitations related to understanding and measurement of cognitive deficits, and development of effective treatments.
Abstract: Cognitive decline is recognized as a prevalent and debilitating symptom of multiple sclerosis (MS), especially deficits in episodic memory and processing speed. The field aims to (1) incorporate cognitive assessment into standard clinical care and clinical trials, (2) utilize state-of-the-art neuroimaging to more thoroughly understand neural bases of cognitive deficits, and (3) develop effective, evidence-based, clinically feasible interventions to prevent or treat cognitive dysfunction, which are lacking. There are obstacles to these goals. Our group of MS researchers and clinicians with varied expertise took stock of the current state of the field, and we identify several important practical and theoretical challenges, including key knowledge gaps and methodologic limitations related to (1) understanding and measurement of cognitive deficits, (2) neuroimaging of neural bases and correlates of deficits, and (3) development of effective treatments. This is not a comprehensive review of the extensive literature, but instead a statement of guidelines and priorities for the field. For instance, we provide recommendations for improving the scientific basis and methodologic rigor for cognitive rehabilitation research. Toward this end, we call for multidisciplinary collaborations toward development of biologically based theoretical models of cognition capable of empirical validation and evidence-based refinement, providing the scientific context for effective treatment discovery.

389 citations

Journal ArticleDOI
TL;DR: Förster resonance energy transfer microscopy demonstrates a dynamic coupling of STIM1 and ORAI1 that culminates in the activation of Ca2+ entry and represents a key domain for dynamic coupling toSTIM1.

388 citations

Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Many common lichens are composed of the known ascomycete, the photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts, and their abundance correlates with previously unexplained variations in phenotype.
Abstract: For over 140 years, lichens have been regarded as a symbiosis between a single fungus, usually an ascomycete, and a photosynthesizing partner. Other fungi have long been known to occur as occasional parasites or endophytes, but the one lichen–one fungus paradigm has seldom been questioned. Here we show that many common lichens are composed of the known ascomycete, the photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts. These yeasts are embedded in the cortex, and their abundance correlates with previously unexplained variations in phenotype. Basidiomycete lineages maintain close associations with specific lichen species over large geographical distances and have been found on six continents. The structurally important lichen cortex, long treated as a zone of differentiated ascomycete cells, appears to consistently contain two unrelated fungi.

387 citations

Journal ArticleDOI
TL;DR: It is demonstrated that small organic volatile compounds emitted from bacterial antagonists negatively influence the mycelial growth of the soil-borne phytopathogenic fungus Rhizoctonia solani Kühn.
Abstract: Bacterial antagonists are bacteria that negatively affect the growth of other organisms. Many antagonists inhibit the growth of fungi by various mechanisms, e.g., secretion of lytic enzymes, siderophores and antibiotics. Such inhibition of fungal growth may indirectly support plant growth. Here, we demonstrate that small organic volatile compounds (VOCs) emitted from bacterial antagonists negatively influence the mycelial growth of the soil-borne phytopathogenic fungus Rhizoctonia solani Kuhn. Strong inhibitions (99-80%) under the test conditions were observed with Stenotrophomonas maltophilia R3089, Serratia plymuthica HRO-C48, Stenotrophomonas rhizophila P69, Serratia odorifera 4Rx13, Pseudomonas trivialis 3Re2-7, S. plymuthica 3Re4-18 and Bacillus subtilis B2g. Pseudomonas fluorescens L13-6-12 and Burkholderia cepacia 1S18 achieved 30% growth reduction. The VOC profiles of these antagonists, obtained through headspace collection and analysis on GC-MS, show different compositions and complexities ranging from 1 to almost 30 compounds. Most volatiles are species-specific, but overlapping volatile patterns were found for Serratia spp. and Pseudomonas spp. Many of the bacterial VOCs could not be identified for lack of match with mass-spectra of volatiles in the databases.

387 citations


Authors

Showing all 18136 results

NameH-indexPapersCitations
David Haussler172488224960
Russel J. Reiter1691646121010
Frederik Barkhof1541449104982
Philip Scheltens1401175107312
Christopher D.M. Fletcher13867482484
Jennifer S. Haas12884071315
Jelena Krstic12683973457
Michael A. Kamm12463753606
Frances H. Arnold11951049651
Gert Pfurtscheller11750762873
Georg Kresse111430244729
Manfred T. Reetz11095942941
Alois Fürstner10845943085
David N. Herndon108122754888
David J. Williams107206062440
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

93% related

Heidelberg University
119.1K papers, 4.6M citations

93% related

University of Zurich
124K papers, 5.3M citations

90% related

Uppsala University
107.5K papers, 4.2M citations

90% related

University of Amsterdam
140.8K papers, 5.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023174
2022422
20211,775
20201,759
20191,649
20181,541