scispace - formally typeset
Search or ask a question
Institution

University of Graz

EducationGraz, Steiermark, Austria
About: University of Graz is a education organization based out in Graz, Steiermark, Austria. It is known for research contribution in the topics: Population & Context (language use). The organization has 17934 authors who have published 37489 publications receiving 1110980 citations. The organization is also known as: Carolo Franciscea Graecensis & Karl Franzens Universität.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes various methodologies for transamination reactions, and provides an overview of omega-TAs that have the potential to be used for the preparation of a broad spectrum of alpha-chiral amines.

386 citations

Journal ArticleDOI
TL;DR: Based on the content of free fatty acids and phosphorus, lipids accumulated from sewage sludge could serve as a substrate for the production of biodiesel.

386 citations

Journal ArticleDOI
TL;DR: Speculations relating oxidized LDL to pathological conditions such as atherosclerosis are presented and its recognition by the scavenger receptor on macrophages, its cytotoxicity especially to proliferating cells, and its chemotactic properties with respect to monocyte-macrophages are presented.

384 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the Roche lobe on the atmospheric loss from short-periodic gas giants was investigated and reasonably accurate approximate formulas to estimate atmospheric loss enhancement due to the action of tidal forces on a hot Jupiter and to calculate the critical temperature for the onset of geometrical blow-off.
Abstract: Context. A study of the mass loss enhancement for very close “Hot Jupiters” due to the gravitational field of the host star is presented. Aims. The influence of the proximity to a planet of the Roche lobe boundary on the critical temperature for blow-off conditions for estimating the increase of the mass loss rate through hydrodynamic blow-off for close-in exoplanets is investigated. Methods. We consider the gravitational potential for a star and a planet along the line that joins their mass centers and the energy balance equation for an evaporating planetary atmosphere including the effect of the stellar tidal force on atmospheric escape. Results. By studying the effect of the Roche lobe on the atmospheric loss from short-periodic gas giants we derived reasonably accurate approximate formulas to estimate atmospheric loss enhancement due to the action of tidal forces on a “Hot Jupiter” and to calculate the critical temperature for the onset of “geometrical blow-off”, which are valid for any physical values of the Roche lobe radial distance. Using these formulas, we found that the stellar tidal forces can enhance the hydrodynamic evaporation rate from TreS-1 and OGLE-TR-56b by about 2 fold, while for HD 209458b we found an enhancement of about 50%. For similar exoplanets which are closer to their host star than OGLE-TR-56b, the mass loss enhancement can be even larger. Moreover, we showed that the effect of the Roche lobe allows “Hot Jupiters” to reach blow-off conditions at temperatures which are less than expected due to the stellar X-ray and EUV heating.

383 citations

Journal ArticleDOI
TL;DR: It is shown that the yeast AIF homologue Ynr074cp controls yeast apoptosis and is renamed AIF-1 (Aif1p, gene AIF1), a cell death effector in yeast, which is essential for normal mammalian development and participates in pathological apoptosis.
Abstract: Apoptosis-inducing factor (AIF), a key regulator of cell death, is essential for normal mammalian development and participates in pathological apoptosis. The proapoptotic nature of AIF and its mode of action are controversial. Here, we show that the yeast AIF homologue Ynr074cp controls yeast apoptosis. Similar to mammalian AIF, Ynr074cp is located in mitochondria and translocates to the nucleus of yeast cells in response to apoptotic stimuli. Purified Ynr074cp degrades yeast nuclei and plasmid DNA. YNR074C disruption rescues yeast cells from oxygen stress and delays age-induced apoptosis. Conversely, overexpression of Ynr074cp strongly stimulates apoptotic cell death induced by hydrogen peroxide and this effect is attenuated by disruption of cyclophilin A or the yeast caspase YCA1. We conclude that Ynr074cp is a cell death effector in yeast and rename it AIF-1 (Aif1p, gene AIF1).

383 citations


Authors

Showing all 18136 results

NameH-indexPapersCitations
David Haussler172488224960
Russel J. Reiter1691646121010
Frederik Barkhof1541449104982
Philip Scheltens1401175107312
Christopher D.M. Fletcher13867482484
Jennifer S. Haas12884071315
Jelena Krstic12683973457
Michael A. Kamm12463753606
Frances H. Arnold11951049651
Gert Pfurtscheller11750762873
Georg Kresse111430244729
Manfred T. Reetz11095942941
Alois Fürstner10845943085
David N. Herndon108122754888
David J. Williams107206062440
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

93% related

Heidelberg University
119.1K papers, 4.6M citations

93% related

University of Zurich
124K papers, 5.3M citations

90% related

Uppsala University
107.5K papers, 4.2M citations

90% related

University of Amsterdam
140.8K papers, 5.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023174
2022422
20211,775
20201,759
20191,649
20181,541