scispace - formally typeset
Search or ask a question
Institution

University of Grenoble

EducationSaint-Martin-d'Hères, France
About: University of Grenoble is a education organization based out in Saint-Martin-d'Hères, France. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 25658 authors who have published 45143 publications receiving 909760 citations.


Papers
More filters
Journal ArticleDOI
D. Aad1, D. Aad2, Brad Abbott3, Brad Abbott2  +5600 moreInstitutions (187)
TL;DR: In this article, measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at root s = 7 TeV are presented, independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background.
Abstract: Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at root s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of mu, the average number of inelastic interactions per bunch crossing. Residual time- and mu-dependence between the methods is less than 2% for 0 < mu < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have a common systematic uncertainty of +/- 11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most +/- 2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.

246 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the physical insight provided by elastoplastic models into practical issues such as strain localization, creep and steady-state rheology, but also the fundamental questions that they address with respect to criticality at the yielding point and the statistics of avalanches of plastic events.
Abstract: The deformation and flow of disordered solids, such as metallic glasses and concentrated emulsions, involves swift localized rearrangements of particles that induce a long-range deformation field. To describe these heterogeneous processes, elastoplastic models handle the material as a collection of 'mesoscopic' blocks alternating between an elastic behavior and plastic relaxation, when they are too loaded. Plastic relaxation events redistribute stresses in the system in a very anisotropic way. We review not only the physical insight provided by these models into practical issues such as strain localization, creep and steady-state rheology, but also the fundamental questions that they address with respect to criticality at the yielding point and the statistics of avalanches of plastic events. Furthermore, we discuss connections with concurrent mean-field approaches and with related problems such as the plasticity of crystals and the depinning of an elastic line.

246 citations

Journal ArticleDOI
TL;DR: This work compared the predictive performance of 33 variants of 15 widely applied and recently emerged species distribution model approaches in the context of multispecies data, including both joint SDMs that model multiple species together, and stacked SDM that model each species individually combining the predictions afterward.
Abstract: A large array of species distribution model (SDM) approaches has been developed for explaining and predicting the occurrences of individual species or species assemblages. Given the wealth of existing models, it is unclear which models perform best for interpolation or extrapolation of existing data sets, particularly when one is concerned with species assemblages. We compared the predictive performance of 33 variants of 15 widely applied and recently emerged SDMs in the context of multispecies data, including both joint SDMs that model multiple species together, and stacked SDMs that model each species individually combining the predictions afterward. We offer a comprehensive evaluation of these SDM approaches by examining their performance in predicting withheld empirical validation data of different sizes representing five different taxonomic groups, and for prediction tasks related to both interpolation and extrapolation. We measure predictive performance by 12 measures of accuracy, discrimination power, calibration, and precision of predictions, for the biological levels of species occurrence, species richness, and community composition. Our results show large variation among the models in their predictive performance, especially for communities comprising many species that are rare. The results do not reveal any major trade‐offs among measures of model performance; the same models performed generally well in terms of accuracy, discrimination, and calibration, and for the biological levels of individual species, species richness, and community composition. In contrast, the models that gave the most precise predictions were not well calibrated, suggesting that poorly performing models can make overconfident predictions. However, none of the models performed well for all prediction tasks. As a general strategy, we therefore propose that researchers fit a small set of models showing complementary performance, and then apply a cross‐validation procedure involving separate data to establish which of these models performs best for the goal of the study.

246 citations

Journal ArticleDOI
M. Aguilar, O. Demakov1, Ying Lu2, U. Becker1  +253 moreInstitutions (27)
TL;DR: The observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90×10−6 helium, 8.4×10^{6} carbon, and 7.0×10 6} oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation are reported.
Abstract: We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90×106 helium, 8.4×106 carbon, and 7.0×106 oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way.

245 citations

Journal ArticleDOI
TL;DR: In vivo and ex vivo data prove that TiO2-NPs would possibly translocate through both the regular epithelium lining the ileum and through Peyer’s patches, would induce epithelia impairment, and would persist in gut cells where they would possibly induce chronic damage.
Abstract: TiO2 particles are commonly used as dietary supplements and may contain up to 36% of nano-sized particles (TiO2-NPs). Still impact and translocation of NPs through the gut epithelium is poorly documented. We show that, in vivo and ex vivo, agglomerates of TiO2-NPs cross both the regular ileum epithelium and the follicle-associated epithelium (FAE) and alter the paracellular permeability of the ileum and colon epithelia. In vitro, they accumulate in M-cells and mucus-secreting cells, much less in enterocytes. They do not cause overt cytotoxicity or apoptosis. They translocate through a model of FAE only, but induce tight junctions remodeling in the regular ileum epithelium, which is a sign of integrity alteration and suggests paracellular passage of NPs. Finally we prove that TiO2-NPs do not dissolve when sequestered up to 24 h in gut cells. Taken together these data prove that TiO2-NPs would possibly translocate through both the regular epithelium lining the ileum and through Peyer’s patches, would induce epithelium impairment, and would persist in gut cells where they would possibly induce chronic damage.

245 citations


Authors

Showing all 25961 results

NameH-indexPapersCitations
Dieter Lutz13967167414
Marcella Bona137139192162
Nicolas Berger137158196529
Cordelia Schmid135464103925
J. F. Macías-Pérez13448694715
Marina Cobal132107885437
Lydia Roos132128489435
Tetiana Hryn'ova131105984260
Johann Collot131101882865
Remi Lafaye131101283281
Jan Stark131118687025
Sabine Crépé-Renaudin129114282741
Isabelle Wingerter-Seez12993079689
James Alexander12988675096
Jessica Levêque129100670208
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Imperial College London
209.1K papers, 9.3M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022698
20215,126
20205,328
20195,192
20184,999