scispace - formally typeset
Search or ask a question
Institution

University of Groningen

EducationGroningen, Groningen, Netherlands
About: University of Groningen is a education organization based out in Groningen, Groningen, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 36346 authors who have published 69116 publications receiving 2940370 citations. The organization is also known as: Rijksuniversiteit Groningen & RUG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comparison between the transition-metal 2p spectra and atomic-multiplet calculations is used to determine the 3d count of holes induced by substitution for both series are located in states of mixed metal 3d--oxygen 2p character.
Abstract: The controlled-valence properties of ${\mathrm{La}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathrm{Sr}}_{\mathit{x}}$${\mathrm{FeO}}_{3}$ and ${\mathrm{La}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathrm{Sr}}_{\mathit{x}}$${\mathrm{MnO}}_{3}$ are studied by means of soft-x-ray absorption spectroscopy. A comparison between the transition-metal 2p spectra and atomic-multiplet calculations is used to determine the 3d count. The O 1s spectrum is used to characterize changes in unoccupied states that contain oxygen p character. The results indicate that the holes induced by substitution for both series are located in states of mixed metal 3d--oxygen 2p character. The ground state of ${\mathrm{LaFeO}}_{3}$ is mainly 3${\mathit{d}}^{5}$ and becomes 3${\mathit{d}}^{5}$L (where L denotes a ligand hole) in the ${\mathrm{La}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathrm{Sr}}_{\mathit{x}}$${\mathrm{FeO}}_{3}$ series for low Sr concentration. The main component of the ground state of ${\mathrm{LaMnO}}_{3}$ is 3${\mathit{d}}^{4}$ and becomes a mixture of 3${\mathit{d}}^{3}$ and 3${\mathit{d}}^{4}$L in the ${\mathrm{La}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathrm{Sr}}_{\mathit{x}}$${\mathrm{MnO}}_{3}$ series. The trends in controlled- valence properties of similar oxides across the transition-metal series can be rationalized within the framework of the Zaanen-Sawatzky-Allen model.

523 citations

Journal ArticleDOI
TL;DR: Results confirm that moderate dietary protein restriction is an acceptable and effective way of delaying functional renal deterioration and has implications for the management of chronic renal insufficiency.

523 citations

Journal ArticleDOI
Stig E. Bojesen1, Stig E. Bojesen2, Karen A. Pooley3, Sharon E. Johnatty4  +452 moreInstitutions (129)
TL;DR: Using the Illumina custom genotyping array iCOGs, SNPs at the TERT locus in breast, ovarian and BRCA1 mutation carrier cancer cases and controls and leukocyte telomere measurements are analyzed to find associations cluster into three independent peaks.
Abstract: TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOG, we analyzed similar to 480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 x 10(-7)), lower risks for estrogen receptor (ER)-negative (P = 1.0 x 10(-8)) and BRCA1 mutation carrier (P = 1.1 x 10(-5)) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 x 10(-14)), higher risk of low-malignant-potential ovarian cancer (P = 1.3 x 10(-15)) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 x 10(-12)) and BRCA1 mutation carrier (P = 1.6 x 10-14) breast and invasive ovarian (P = 1.3 x 10(-11)) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.

522 citations

Journal ArticleDOI
TL;DR: Treating-to-target-in-SLE (T2T/SLE) recommendations were developed by a large task force of multispecialty experts and a patient representative and it is anticipated that ‘treating- to-target’ can and will be applicable to the care of patients with SLE.
Abstract: The principle of treating-to-target has been successfully applied to many diseases outside rheumatology and more recently to rheumatoid arthritis. Identifying appropriate therapeutic targets and pursuing these systematically has led to improved care for patients with these diseases and useful guidance for healthcare providers and administrators. Thus, an initiative to evaluate possible therapeutic targets and develop treat-to-target guidance was believed to be highly appropriate in the management of systemic lupus erythematosus (SLE) patients as well. Specialists in rheumatology, nephrology, dermatology, internal medicine and clinical immunology, and a patient representative, contributed to this initiative. The majority convened on three occasions in 2012-2013. Twelve topics of critical importance were identified and a systematic literature review was performed. The results were condensed and reformulated as recommendations, discussed, modified and voted upon. The finalised bullet points were analysed for degree of agreement among the task force. The Oxford Centre level of evidence (LoE, corresponding to the research questions) and grade of recommendation (GoR) were determined for each recommendation. The 12 systematic literature searches and their summaries led to 11 recommendations. Prominent features of these recommendations are targeting remission, preventing damage and improving quality of life. LoE and GoR of the recommendations were variable but agreement was >0.9 in each case. An extensive research agenda was identified, and four overarching principles were also agreed upon. Treat-to-target-in-SLE (T2T/SLE) recommendations were developed by a large task force of multispecialty experts and a patient representative. It is anticipated that 'treating-to-target' can and will be applicable to the care of patients with SLE.

521 citations

Journal ArticleDOI
TL;DR: It is discussed how identifying new genes that are associated with more than one autoimmune or chronic inflammatory disorder could explain the genetic basis of the shared pathogenesis of immune-related diseases.
Abstract: Recent genetic studies have revealed shared immunological mechanisms in several immune-related disorders that further our understanding of the development and concomitance of these diseases. Our Review focuses on these shared aspects, using the novel findings of recently performed genome-wide association studies and non-synonymous SNP scans as a starting point. We discuss how identifying new genes that are associated with more than one autoimmune or chronic inflammatory disorder could explain the genetic basis of the shared pathogenesis of immune-related diseases. This analysis helps to highlight the key molecular pathways that are involved in these disorders and the potential roles of novel genes in immune-related diseases.

521 citations


Authors

Showing all 36692 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas J. Wareham2121657204896
André G. Uitterlinden1991229156747
Lei Jiang1702244135205
Brenda W.J.H. Penninx1701139119082
Richard H. Friend1691182140032
Panos Deloukas162410154018
Jerome I. Rotter1561071116296
Christopher M. Dobson1501008105475
Dirk Inzé14964774468
Scott T. Weiss147102574742
Dieter Lutz13967167414
Wilmar B. Schaufeli13751395718
Cisca Wijmenga13666886572
Arnold B. Bakker135506103778
Network Information
Related Institutions (5)
University of Amsterdam
140.8K papers, 5.9M citations

98% related

Utrecht University
139.3K papers, 6.2M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

94% related

University College London
210.6K papers, 9.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022543
20214,487
20203,990
20193,283
20182,836