scispace - formally typeset
Search or ask a question
Institution

University of Guelph

EducationGuelph, Ontario, Canada
About: University of Guelph is a education organization based out in Guelph, Ontario, Canada. It is known for research contribution in the topics: Population & Gene. The organization has 26542 authors who have published 50553 publications receiving 1715255 citations. The organization is also known as: U of G & Guelph University.


Papers
More filters
Journal ArticleDOI
TL;DR: Computer simulation of a section of a model single-layer peptidoglycan network in an aqueous solution with a Debye shielding length of 0.3 nm gave a mass distribution full width at half height of 2.4 nm, in essential agreement with results.
Abstract: Atomic force microscopy was used to measure the thickness of air-dried, collapsed murein sacculi from Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Air-dried sacculi from E. coli had a thickness of 3.0 nm, whereas those from P. aeruginosa were 1.5 nm thick. When rehydrated, the sacculi of both bacteria swelled to double their anhydrous thickness. Computer simulation of a section of a model single-layer peptidoglycan network in an aqueous solution with a Debye shielding length of 0.3 nm gave a mass distribution full width at half height of 2.4 nm, in essential agreement with these results. When E. coli sacculi were suspended over a narrow groove that had been etched into a silicon surface and the tip of the atomic force microscope used to depress and stretch the peptidoglycan, an elastic modulus of 2.5 x 10(7) N/m(2) was determined for hydrated sacculi; they were perfectly elastic, springing back to their original position when the tip was removed. Dried sacculi were more rigid with a modulus of 3 x 10(8) to 4 x 10(8) N/m(2) and at times could be broken by the atomic force microscope tip. Sacculi aligned over the groove with their long axis at right angles to the channel axis were more deformable than those with their long axis parallel to the groove axis, as would be expected if the peptidoglycan strands in the sacculus were oriented at right angles to the long cell axis of this gram-negative rod. Polar caps were not found to be more rigid structures but collapsed to the same thickness as the cylindrical portions of the sacculi. The elasticity of intact E. coli sacculi is such that, if the peptidoglycan strands are aligned in unison, the interstrand spacing should increase by 12% with every 1 atm increase in (turgor) pressure. Assuming an unstressed hydrated interstrand spacing of 1.3 nm (R. E. Burge, A. G. Fowler, and D. A. Reaveley, J. Mol. Biol. 117:927-953, 1977) and an internal turgor pressure of 3 to 5 atm (or 304 to 507 kPa) (A. L. Koch, Adv. Microbial Physiol. 24:301-366, 1983), the natural interstrand spacing in cells would be 1.6 to 2.0 nm. Clearly, if large macromolecules of a diameter greater than these spacings are secreted through this layer, the local ordering of the peptidoglycan must somehow be disrupted.

332 citations

Journal ArticleDOI
TL;DR: A series of arguments based on probability, sampling, food web and coexistence theories supporting that significant spatial associations between species (or lack thereof) is a poor proxy for ecological interactions are presented.
Abstract: There is a rich amount of information in co-occurrence (presence-absence) data that could be used to understand community assembly. This proposition first envisioned by Forbes (1907) and then Diamond (1975) prompted the development of numerous modelling approaches (e.g. null model analysis, co-occurrence networks and, more recently, joint species distribution models). Both theory and experimental evidence support the idea that ecological interactions may affect co-occurrence, but it remains unclear to what extent the signal of interaction can be captured in observational data. It is now time to step back from the statistical developments and critically assess whether co-occurrence data are really a proxy for ecological interactions. In this paper, we present a series of arguments based on probability, sampling, food web and coexistence theories supporting that significant spatial associations between species (or lack thereof) is a poor proxy for ecological interactions. We discuss appropriate interpretations of co-occurrence, along with potential avenues to extract as much information as possible from such data.

332 citations

Journal ArticleDOI
TL;DR: The toxicology of dioxins has been addressed principally through studies of their mechanism of toxic action using animal models and is the focus of this review.
Abstract: Over the last several decades, dioxins have become the subject of intense public and scientific scrutiny. This is the result of not only their widespread presence in the environment but also their great toxicity. The environmental issue has been addressed through the study of the production, release and fate of dioxins and related substances, as well as the development of analytical techniques to detect and quantify these compounds in environmental matrices. The toxicology of dioxins has been addressed principally through studies of their mechanism of toxic action using animal models and is the focus of this review. In addition, the potential threat that dioxins present to human health has been addressed in a limited manner through epidemiological studies of populations known to have been exposed to dioxins.

331 citations

Journal ArticleDOI
TL;DR: Current knowledge of aboveground and belowground diversity links from a global to a local scale is discussed, suggesting that there are size-related biodiversity gradients in global aboveground–belowground linkages.
Abstract: Aboveground and belowground species interactions drive ecosystem properties at the local scale, but it is unclear how these relationships scale-up to regional and global scales. Here, we discuss our current knowledge of aboveground and belowground diversity links from a global to a local scale. Global diversity peaks towards the Equator for large, aboveground organisms, but not for small (mainly belowground) organisms, suggesting that there are size-related biodiversity gradients in global aboveground–belowground linkages. The generalization of aboveground–belowground diversity relationships, and their role in ecosystem functioning, requires surveys at scales that are relevant to the organisms and ecosystem properties. Habitat sizes and diversity gradients can differ significantly between aboveground and belowground organisms and between ecosystems. These gradients in biodiversity and plant community trait perception need to be acknowledged when studying aboveground–belowground biodiversity linkages.

331 citations

Journal ArticleDOI
TL;DR: The degree to which introductions of mycorrhizal fungi may lead to unintended negative, and potentially costly, consequences is assessed and appropriate management guidelines are made and top priority research needs are highlighted.
Abstract: Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species' introductions. Moreover, recent studies of mycorrhizal symbionts have led to an increased knowledge of the potential utility of fungal inoculations in agricultural, horticultural and ecological management. The intentional movement of mycorrhizal fungal species is growing, but the concomitant potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. We assess the degree to which introductions of mycorrhizal fungi may lead to unintended negative, and potentially costly, consequences. Our purpose is to make recommendations regarding appropriate management guidelines and highlight top priority research needs. Given the difficulty in discerning invasive species problems associated with mycorrhizal inoculations, we recommend the following. First, careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Second, invasive species problems are costly and often impossible to control by the time they are recognized. We recommend using local inoculum sources whenever possible. Third, non-sterile cultures of inoculum can result in the movement of saprobes and pathogens as well as mutualists. We recommend using material that has been produced through sterile culture when local inoculum is not available. Finally, life-history characteristics of inoculated fungi may provide general guidelines relative to the likelihood of establishment and spread. We recommend that, when using non-local fungi, managers choose fungal taxa that carry life-history traits that may minimize the likelihood of deleterious invasive species problems. Additional research is needed on the potential of mycorrhizal fungi to spread to non-target areas and cause ecological damage.

331 citations


Authors

Showing all 26778 results

NameH-indexPapersCitations
Dirk Inzé14964774468
Norbert Perrimon13861073505
Bobby Samir Acharya1331121100545
Eduardo Marbán12957949586
Benoît Roux12049362215
Fereidoon Shahidi11995157796
Stephen Safe11678460588
Mark A. Tarnopolsky11564442501
Robert C. Haddon11257752712
Milton H. Saier11170754496
Hans J. Vogel111126062846
Paul D. N. Hebert11153766288
Peter T. Katzmarzyk11061856484
John Campbell107115056067
Linda F. Nazar10631852092
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

93% related

Michigan State University
137K papers, 5.6M citations

93% related

Texas A&M University
164.3K papers, 5.7M citations

92% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022391
20212,575
20202,547
20192,264
20182,155