scispace - formally typeset
Search or ask a question
Institution

University of Hamburg

EducationHamburg, Germany
About: University of Hamburg is a education organization based out in Hamburg, Germany. It is known for research contribution in the topics: Population & Laser. The organization has 45564 authors who have published 89286 publications receiving 2850161 citations. The organization is also known as: Hamburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that the KidSCREEN-10 provides a valid measure of a general HRQoL factor in children and adolescents, but the instrument does not represent well most of the single dimensions of the original KIDSCREen-52.
Abstract: Background To assess the criterion and construct validity of the KIDSCREEN-10 well-being and health-related quality of life (HRQoL) score, a short version of the KIDSCREEN-52 and KIDSCREEN-27 instruments.

451 citations

Journal ArticleDOI
TL;DR: It is reported that dasatinib potently inhibits WT KIT and juxtamembrane domain mutant KIT autophosphorylation and KIT-dependent activation of downstream pathways important for cell viability and cell survival, such as Ras/mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and Janus-activated kinase/signal transducers and activators of transcription.
Abstract: Activating mutations of the activation loop of KIT are associated with certain human neoplasms, including the majority of patients with systemic mast cell disorders, as well as cases of seminoma, acute myelogenous leukemia (AML), and gastrointestinal stromal tumors (GISTs) The small-molecule tyrosine kinase inhibitor imatinib mesylate is a potent inhibitor of wild-type (WT) KIT and certain mutant KIT isoforms and has become the standard of care for treating patients with metastatic GIST However, KIT activation loop mutations involving codon D816 that are typically found in AML, systemic mastocytosis, and seminoma are insensitive to imatinib mesylate (IC50 > 5-10 micromol/L), and acquired KIT activation loop mutations can be associated with imatinib mesylate resistance in GIST Dasatinib (formerly BMS-354825) is a small-molecule, ATP-competitive inhibitor of SRC and ABL tyrosine kinases with potency in the low nanomolar range Some small-molecule SRC/ABL inhibitors also have potency against WT KIT kinase Therefore, we hypothesized that dasatinib might inhibit the kinase activity of both WT and mutant KIT isoforms We report herein that dasatinib potently inhibits WT KIT and juxtamembrane domain mutant KIT autophosphorylation and KIT-dependent activation of downstream pathways important for cell viability and cell survival, such as Ras/mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and Janus-activated kinase/signal transducers and activators of transcription Furthermore, dasatinib is a potent inhibitor of imatinib-resistant KIT activation loop mutants and induces apoptosis in mast cell and leukemic cell lines expressing these mutations (potency against KIT D816Y >> D816F > D816V) Our studies suggest that dasatinib may have clinical efficacy against human neoplasms that are associated with gain-of-function KIT mutations

451 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of three different types of nano-fillers on fracture toughness and failure mechanism of epoxy-based polymer nano-composites, including thermally reduced graphene oxide (TRGO), graphite nano-platelets (GNP), and multi-wall carbon nano-tubes (MWCNT).

450 citations

Journal ArticleDOI
TL;DR: In this article, the world-volume geometries of D-branes can be reconstructed within the microscopic framework where Dbranes are described through boundary conformal field theory.
Abstract: In this note we explain how world-volume geometries of D-branes can be reconstructed within the microscopic framework where D-branes are described through boundary conformal field theory. We extract the (non-commutative) world-volume algebras from the operator product expansions of open string vertex operators. For branes in a flat background with constant non-vanishing B-field, the operator products are computed perturbatively to all orders in the field strength. The resulting series coincides with Kontsevich's presentation of the Moyal product. After extending these considerations to fermionic fields we conclude with some remarks on the generalization of our approach to curved backgrounds.

449 citations

Journal ArticleDOI
27 May 2016-Science
TL;DR: The Berry curvature is engineered and measured in a simulated boron-nitride optical lattice filled with fermionic K atoms and the results pave the way to explore intriguing phases of matter with interactions in topological band structures.
Abstract: Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved measurement of the ensuing Berry curvature. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.

449 citations


Authors

Showing all 46072 results

NameH-indexPapersCitations
Rudolf Jaenisch206606178436
Bruce M. Psaty1811205138244
Stefan Schreiber1781233138528
Chris Sander178713233287
Dennis J. Selkoe177607145825
Daniel R. Weinberger177879128450
Ramachandran S. Vasan1721100138108
Bradley Cox1692150156200
Anders Björklund16576984268
J. S. Lange1602083145919
Hannes Jung1592069125069
Andrew D. Hamilton1511334105439
Jongmin Lee1502257134772
Teresa Lenz1501718114725
Stefanie Dimmeler14757481658
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

97% related

Technische Universität München
123.4K papers, 4M citations

95% related

University of Bern
79.4K papers, 3.1M citations

94% related

University of Zurich
124K papers, 5.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023282
2022817
20215,784
20205,492
20194,994
20184,587